OCT Angiography in Evaluation of the Macular Holes Treatment Results
https://doi.org/10.18008/1816-5095-2019-3-310-316
Abstract
Purpose: to assess the structure of the avascular zone and Vessel Density Retina in fovea using optical coherence tomography with angiography (OCT-angiography) after surgical treatment of macular hole, (MН) with platelet-rich plasma (PRP). Patients and methods. We examined and operated 32 patients (32 eyes) with macular hole. During surgery, after posterior hyaloid and internal limiting membrane (ILM) removing the platelet–rich plazma was appliqué on the region of the hole. Оphthalmologic diagnosis and OCT angiography were performed before and in 1 and 3 months after surgery, evaluate the area of the avascular zone and Vessel Density Retina in fovea. We compared this information with a healthy eye. Results and discussion. Аll patients had significantly visual acuity increasement. Anatomical closure was confirmed in all cases. Аfter surgery, we note a decreasement in the size of the avascular zone and increasement of the Vessel Density Retina in fovea. Conclusions. OCT angiography allows to evaluate the decreasement in the size of avascular areas and increasement of the Vessel Density Retina in fovea in postoperative period.
About the Authors
D. O. ShkvorchenkoRussian Federation
Shkvorchenko Dmitry О. - МD, Deputy Chief of Medical Оfficer on Мedical Work
E. A. Krupina
Russian Federation
Krupina Eugenia А. - Postgraduate
A. V. Fomin
Russian Federation
Fomin Alexey V. - Director of clinical marketing
References
1. Kelly N.E., Wendel R.T. Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch. Ophthalmolog.1991;109:654–659.
2. Балашевич Л.И., Байбородов Я.В., Жоголев К.С. Хирургическое лечение патоло гии витреомакулярного интерфейса. Обзор литературы в вопросах и ответах. Офтальмохирургия. 2015;2:80–85. [Balashevich L.I., Baiborodov J.V., Zogolev K.S. Surgical treatment of the vitreo-macular interface pathology. Review of the for eign literature in questions and answers. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya. 2015;2:80–85 (In Russ.)]. DOI: 10.25276/0235-4160-2015-2-80-86
3. Sheidow T.G., Blinder K.J., Holekamp N., et al. Outcome results in macular hole surgery: an evaluation of internal limiting membrane peeling with and without indocyanine green. Ophthalmology. 2003;110(9):1697–1701. DOI: 10.1016/S01616420(03)00562-1
4. Kumagai K., Furukawa M., Ogino N., et al. Vitreous surgery with and without internal limiting membrane peeling for macular hole repair. Retina. 2004;24(5):721–727.
5. Алпатов С.А., Щуко А.Г., Малышев В.В. Патогенез и лечение идиопатических макулярных разрывов. Новосибирск: Наука; 2005:192 [Alpatov S.A., Shchu ko A.G., Malyshev V.V Pathogenesis and treatment of Idiopatic macular holes. Novosibirsk: Science; 2005:192 (In Russ.)].
6. Белый Ю.А., Терещенко А.В., Шкворченко Д.О. и др. Новый подход к хи рургии больших идиопатических макулярных разрывов. Современные технологии в офтальмологии. 2015;1(5):24–27. [Beliy Yu.A., Tereshchenko A.V., Shkvorchenko D.O., et. al. New method of surgery of large idiopathic macular holes. Modern technologies in ophthalmology = Sovremennye tekhnologii v oftal’mologii. 2015;1(5):24–27 (In Russ.)].
7. Шпак А.А., Шкворченко Д.О., Шарафетдинов И.Х., Юханова О.А. Прогно зирование анатомического эффекта хирургического лечения идиопатиче ского макулярного разрыва. Современные технологии в офтальмологии. 2015;1:136–138. [Shpak A.A., Shkvorchenko D.O., Sharafetdinov I.Kh., Yuhanova O.A. Predicting the results of surgical treatment of idiopathic macular hole. Mod ern technologies in ophthalmology = Sovremennye tekhnologii v oftal’mologii. 2015;1:136–138 (In Russ.)]. DOI: 10.25276/0235-4160-2015-2-55-61
8. Kwork A.K., Lai T.Y., Wong V.W. Idiopatic macular hole surgery in Chinese pa tients: a randomized study to compare indocyanin green-assisted internal limiting membrane peeling with no iternal limiting membran peeling. Hon Kong Med. J. 2005;11:259–266.
9. Baba T., Yamamoto S., Arai M., et al. Correlation of visual recovery and pres ence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina. 2008;28(3):453–458. DOI: 10.1097/ IAE.0b013e3181571398
10. Engelmann K., Sievert U., Hölig K., Wittig D., Weßlau S., Domann S., Siegert G., Valtink M. Effect of autologous platelet concentrates on the anatomical and functional outcome of late stage macular hole surgery: A retrospective analysis. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2015;58:11–12. DOI: 10.1007/s00103-015-2251-1
11. Gaudric A., Massin P., Paques M., et al. Autologous platelet concentrate for the treatment of full-thickness macular holes. Graefes Arch Clin Exp Ophthalmol.1995;233(9):549–554.
12. Kapoor K.G., Khan A.N., Tieu B.C., Khurshid G.S. Revisiting autologous platelets as an adjuvant in macular hole repair: chronic macular holes without prone positioning. Ophthalmic Surg Lasers Imaging. 2012;43(4):291–295. DOI: 10.3928/15428877-20120426-03
13. Konstantinidis A., Hero M., Nanos P., Panos G.D. Efficacy of autologous platelets i n macular hole surgery. Clin Ophthalmol. 2013;7:45–50. DOI: 10.2147/OPTH.S44440
14. Шкворченко Д.О., Захаров В.Д., Крупина Е.А., Письменская В.А., Какуни на С.А., Норманн К.С., Петерсен Е.В. Хирургическое лечение макулярных разрывов с применением богатой тромбоцитами плазмы крови. Офтальмохирургия. 2017;3:27–30. [Shkvorchenko D.O., Zakharov V.D., Krupina E.A., Pismen skaya V.A., Kakunina S.A., Norman K.S., Petersen E.V. Surgical treatment of primary macular hole using platelet-rich plasma. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya 2017;3:27–30 (In Russ.)]. DOI: 10.25276/0235-4160-2017-3-27-30
15. Захаров В.Д., Шкворченко Д.О., Крупина Е.А., Письменская В.А., Какунина С.А., Норман К.С. Эффективность богатой тромбоцитами плазмы крови в хирур гии больших макулярных разрывов. Практическая медицина.2016;9:118–121. [Zakharov V.D., Shkvorchenko D.O., Krupina E.A., Pismenskaya V.A., Kakunina S.A., Norman K.S. Efficacy of platelet-rich plasma in large macular holes surgery. Practical medicine = Prakticheskaya meditsina. 2016;9:118–121 (In Russ.)].
16. Tokayer J., Jia Y., Dhalla A. H., Huang D. Blood flow velocity quantification us ing split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express. 2013;4:1909–1924. DOI: 10.1364/BOE.4.001909
17. Gao S.S., Liu G., Huang D., Jia Y. Optimization of the split-spectrum amplitudedecorrelation angiography algorithm on a spectral optical coherence tomography system. Opt Letters. 2015;40:2305–2308.
18. Dmuchowska D.A. Сan optical coherence tomography replace fluorescein angi ography in detection of ischemic diabetic maculopathy? Graefes Arch. Clin. Exp. Ophthalmol. 2014;252(5):731–738. DOI: 10.1007/s00417-013-2518
19. Jhon Choi W. Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography. PLoS One. 2013;8(12):e81499. DOI: 10.1371/ journal.pone.0081499
20. Vaziri K., Schwartz S.G. Rates of Reoperation and Retinal Detachment Following Macular Hole Surgery. Ophthalmology. 2016;123(1):26–31. DOI: 10.1016/j. ophtha.2015.09.015
21. Frechette J.P. Platalet rich plazma Dent. Res.2005; 84(5):434-439. DOI: 10.1007/9783-642-40117-6_2
22. Новочадов В.В. Проблема управления клеточным заселением и ремоделиро ванием тканеинженерных матриц для восстановления суставного хряща (об зор литературы). Вестник Волгоградского государственного университета. Серия 11, Естественные науки. 2013;1(5):19–28. [Novochadov V.V. The problem of management of cell population and remodeling of tissue-engineering scaffolds for the articular cartilage reconstruction, Journal of Volgograd State University = Vestnik Volgogradskogo gosudarstvennogo universiteta. 2013;1(5):19–28 (In Russ.)].
23. Bringmann A., Pannicke T., Grosche J., Francke M., Wiedemann P., Skatchkov S.N., Osborne N.N., Reichenbach A. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424. DOI: 10.1016/j.preteyeres.2006.05.003
24. Jadhav A.P., Roesch K., Cepko C.L. Development and neurogenic potential of Müller glial cells in the vertebrate retina. Prog Retin Eye Res. 2009;28:249–262. DOI: 10.1016/j.preteyeres.2009.05.002
25. Ooka E., Mitamura Y., Baba T., Kitahashi M., Oshitari T., Yamamoto S. Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am J Ophthalmol. 2011;152(2):283–290. DOI: 10.1016/j.ajo.2011.02.001
26. Ruiz-Moreno J.M., Arias L., Araiz J., García-Arumí J., Montero J.A., Piñero D.P. Spectral-domain optical coherence tomography study of macular structure as prognostic and determining factor for macular hole surgery outcome. Retina. 2013;33(6):1117–1122. DOI: 10.1097/IAE.0b013e318285cc3b
27. Hashimoto Y., Saito W., Fujiya A. Changes in inner and outer retinal layer thicknesses after vitrectomy for idiopathic macular hole: implications for visual prognosis. PLoS One. 2015;10(8):e0135925. DOI: 10.1371/journal. pone.0135925
28. Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;(35)11:2196–2203.
29. Tadayoni R., Paques M., Massin P., et al. Dissociated optic nerve fiber layer appear ance of the fundus after idiopathic epiretinal membrane removal. Ophthalmology. 2001;108:2279–2283. DOI: 10.1016/S0161-6420(01)00856-9
Review
For citations:
Shkvorchenko D.O., Krupina E.A., Fomin A.V. OCT Angiography in Evaluation of the Macular Holes Treatment Results. Ophthalmology in Russia. 2019;16(3):310-316. (In Russ.) https://doi.org/10.18008/1816-5095-2019-3-310-316