Fractal Phototherapy in Neuroprotection of Glaucoma
https://doi.org/10.18008/1816-5095-2019-3-317-328
Abstract
Purpose: to study the effect of low-intensity fractal light stimulation on the sensitivity in the visual field in patients with suspected glaucoma (SG) and primary open-angle glaucoma (POAG). Material and Methods. The study involved 146 people, including 98 patients of the main group (No. 1) and 49 people from the control group “placebo”-therapy (No. 2). Standard automatic perimetry was performed (SITA-Standard, Humphrey, CarlZeissMeditec, 24-2). The dynamics of the perimetry indices MD and PSD were evaluated before and after the course of a ten 10-minute session of fractal phototherapy or after a 10-day course of relaxation consisting in watching a particular training video twice a day. The maximum brightness of the flashes on the cornea during phototherapy was 10–12 lux, the fractal dimension of the optical signal was D = 1.4. Results. A two-week course of low-intensity stimulation with fractal optical signals reliably improved the MD reflected the common defect in the visual field, in all patients with SG and POAG. The expositions to videos with a relaxation program did not have a statistically significant effect on MD and PSD indices. The pronounced effect of fractal stimulation revealed in eyes with POAG III (a reduction of MD on average by 4.39 dB) suggests that even in advanced stages of glaucoma in the general population of retinal ganglion cells there is a significant percentage of cells that are still at the plastic stage of reversible functional changes and can respond positively to therapy. The results substantiate the feasibility of application neuroprotective therapy to patients with any stage of glaucoma, including the advanced stage. Conclusion. In this study, we first used the technology of fractal optical stimulation for the treatment of glaucoma. The first evidence of the neuroprotective effect of fractal phototherapy for POAG at different stages has been obtained. Fractal stimulation can be considered as a new non-pharmacological (physiotherapeutic) approach to neuroprotective therapy, whose potential and mechanisms need to be studied in future studies.
About the Authors
M. V. ZuevaRussian Federation
Zueva Marina V. - Professor, Dr. Biol. Sci., the Head of the Department of Clinical Physiology of Vision named after S.V. Kravkov
M. A. Kovalevskaya
Russian Federation
Kovalevskaya Marya A. - MD, professor, the Head of the Ophthalmology Department
O. V. Donkareva
Russian Federation
Donkareva Olga V. - PhD, docent, Department of Oftalmology
A. I. Karankevich
Russian Federation
Karankevich Alexandr Ivanovich - Assoc. Prof., Cand. Tech. Sci.
I. V. Tsapenko
Russian Federation
Tsapenko Irina V. - Cand. Biol. Sci., senior researcher of the Clinical Physiology of Vision Department named after S.V. Kravkov
A. A. Taranov
Russian Federation
Taranov Alexsandr A. - programmer
V. B. Antonyan
Russian Federation
Antonyan Veronika B. - post-graduate
References
1. Doozandeh A., Yazdani Sh. Glaucoma Neuroprotection. J. Ophthalmic Vis. Res. 2016;11(2):209–20. http://www.jovr.org/text.asp?2016/11/2/209/183923
2. Foldvari M., Chen D.W. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy. Neural Regen. Res. 2016 June; 11(6):875–7. DOI: 10.4103/1673-5374.184448
3. Lawlor M., Danesh-Meyer H., Levin L.A., Davagnanam I., De Vita E., Plant G.T. Glaucoma and the brain: Trans-synaptic degeneration, structural change, and im plications for neuroprotection. Surv. Opthalmol. 2018;63:296–306. DOI: 10.1016/j. survophthal.2017.09.010
4. Cordeiro M.F. Eyeing the brain. Acta Neuropathologica. 2016;132(6):765–6. https://link.springer.com/article/10.1007/s00401-016-1628-z#citeas
5. Нестеров А.П. Глаукома. М.: Медицина; 1995: 256. [Nesterov A.P. Glaucoma. Moscow: Medicine; 1995: 256. (In Russ.)].
6. Gupta N., Yücel Y.H. Glaucoma as a neurodegenerative disease. Curr. Opin. Ophthalmol. 2007;18(2):110–4. DOI: 10.1097/ICU.0b013e3280895aea
7. Calkins D.J., Horner P.J. The Cell and Molecular Biology of Glaucoma: Axonopa thy and the Brain. Invest. Ophthalmol. Vis. Sci. 2012;53(5):2482–4. DOI: 10.1167/ iovs.12-9483i
8. Lebrun-Julien F., Di Polo A. Molecular and cell-based approaches for neuro protection in glaucoma. Optom. Vis. Sci. 2008;85(6):417–24. DOI: 10.1097/ OPX.0b013e31817841f7
9. Pease M.E., McKinnon S.J., Quigley H.A., Kerrigan-Baumrind L.A., Zack D.J. Ob structed axonal transport of BDNF and its receptor TrkB in experimental glauco ma. Invest. Ophthalmol. Vis. Sci. 2000;41:764–74.
10. Quigley H.A., McKinnon S.J., Zack D.J., Pease M.E., Kerrigan-Baumrind L.A., Kerrigan D.F., Mitchell R.S. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest. Ophthalmol. Vis. Sci. 2000;41:3460–6.
11. Reh T.A., McCabe K., Kelley M.W., Bermingham-McDonogh O., editors. Growth factors in the treatment of degenerative retinal disorders. John Wiley & Sons, Ltd., Chichester; 1996.
12. Aguayo A.J., Clarke D.B., Jelsma T.N., Kittlerova P., Friedman H.C., Bray G.M. Ef fects of neurotrophins on the survival and regrowth of injured retinal neurons. Ciba Found. Symp. 1996;196:135–44.
13. Johnson J.E., Barde Y.A., Schwab M., Thoenen H. Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J. Neurosci. 1986;6:3031– 8. DOI: 10.1523/JNEUROSCI.06-10-03031.1986
14. Bonnet D., Garcia M., Vecino E., Lorentz J.G., Sahel J., Hicks D. Brain-derived neu rotrophic factor signalling in adult pig retinal ganglion cell neurite regeneration in vitro. Brain Res. 2004;1007:142–51. DOI: 10.1016/j.brainres.2004.02.023
15. Arango-González B., Cellerino A., Kohler K. Exogenous brain-derived neurotrophic factor (BDNF) reverts phenotypic changes in the retinas of transgenic mice lacking the BDNF gene. Invest. Ophthalmol. Vis. Sci. 2009;50:1416–22. DOI: 10.1167/iovs.08-2244
16. Weibel D., Kreutzberg G.W., Schwab M.E. Brain-derived neurotrophic factor (BDNF) prevents lesion-induced axonal die-back in young rat optic nerve. Brain Res. 1995;679:249–54.
17. Kimura A., Namekata K., Guo X., Harada Ch., Harada T. Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration. Int. J. Mol. Sci. 2016;17(9):1584. DOI: 10.3390/ijms17091584
18. Plant G.W., Harvey A.R., Leaver S.G., Lee S.V. Olfactory ensheathing glia: Repair ing injury to the mammalian visual system. Exp. Neurol. 2011;229:99–108. DOI: 10.1016/j.expneurol.2010.09.010
19. Greco S.J., Rameshwar P. Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. Biologics. 2008;2:699–705.
20. Parisi V., Coppola G., Centofanti M., Oddone F., Angrisani A.M., Ziccardi L., Ricci B., Quqranta L., Manni G. Evidence of the neuroprotective role of citicoline in glaucoma patients. Prog. Brain Res. 2008;173:541–54. DOI: 10.1016/S00796123(08)01137-0
21. Iulia C., Ruxandra T., Costin L.-B., Liliana-Mary V. Citicoline — a neuroprotector with proven effects on glaucomatous disease. Rom. J. Ophthalmol. 2017;61(3):152–8.
22. Зуева М.В. Динамика гибели ганглиозных клеток сетчатки при глаукоме и ее функциональные маркеры. Национальный журнал Глаукома. 2016;15(1):70– 85. [Zueva M.V. Dynamics of death of retinal ganglion cells in glaucoma and its functional markers. National Journal glaucoma = Natsional’nyj zhurnal glaukoma. 2016;15(1):70–85 (In Russ.)].
23. Porciatti V., Ventura L.M. Retinal Ganglion Cell Functional Plasticity and Optic Neuropathy: A Comprehensive Model. J. Neuroophthalmol. 2012;32(4):354–8. DOI: 10.1097/WNO.0b013e3182745600
24. Goldberger A.L. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect. Biol. Med. 1997;40:543–61.
25. Goldberger A.L., Amaral L.A.N., Hausdorff J.M., Ivanov P.Ch., Peng C.-K., Stanley H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Nat. Acad. Sci. 2002; 99(suppl 1):2466–72. DOI: 10.1073/pnas.012579499
26. Zueva M.V. Dynamic fractal flickering as a tool in research of non-linear dynamics of the evoked activity of a visual system and the possible basis for new diagnostics and treatment of neurodegenerative diseases of the retina and brain. World Appl. Sci. J. 2013;(4)27:462–8. DOI: 10.5829/idosi.wasj.2013.27.04.13657
27. Zueva M.V. Fractality of sensations and the brain health: the theory linking neu rodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world. Front. Aging Neurosci. 2015;7:135. DOI: 10.3389/fnagi.2015.00135
28. Зуева М.В. Нелинейные фракталы: приложение в физиологии и офтальмоло гии. Офтальмология. 2014;11(1):5–12. [Zueva M.V. Nonlinear fractals: applica tions in physiology and ophthalmology. Ophthalmology in Russia = Oftalmol’ogiya. 2014;11(1):5–12 (In Russ.)]. DOI: 10.18008/1816-5095-2014-1-4-11
29. Зуева М.В. Перспективность применения нелинейной стимуляционной терапии в лечении травматических повреждений головного мозга и под держании когнитивных функций у пожилых лиц. Обозрение психиатрии и медицинской психологии им. В.М. Бехтерева. 2018;(2):36–43. [Zueva M.V. Prospects for the use of nonlinear stimulation therapy in the treatment of trau matic brain damage and maintaining cognitive functions in the elderly. Review of psychiatry and medical psychology named Bekhterev = Obozrenie psihiatrii i medicinskoj psihologii im. V.M. Bekhtereva. 2018;(2):36–43 (In Russ.)]. DOI: 10.31363/2313-7053-2018-2-36-43
30. Zueva M., Spiridonov I., Semenova N., Tsapenko I., Maglakelidze N., Stadelman J. The LED fractal stimulator and first evidence of its application in electroretinogra phy. Doc. Ophthalmologica. 2017;135(Suppl.1):35–6.
31. Baroncelli L., Braschi C., Spolidoro M., Begenisic T., Sale A., Maffei L. Nurtur ing brain plasticity: impact of environmental enrichment. Cell Death Differ. 2010;17(7):1092–103. DOI: 10.1038/cdd.2009.193
32. Alwis D.S., Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Front. Syst. Neurosci. 2014;8:156. DOI: 10.3389/fnsys.2014.00156
33. Зуева М.В. Технологии нелинейной стимуляции: роль в терапии заболеваний головного мозга и потенциал применения у здоровых лиц. Физиология человека. 2018;44(3):62–73. [Zueva M.V. Technologies of Nonlinear Stimulation: Role in the Treatment of Diseases of the Brain and the Potential Applications in Healthy Individuals. Human Physiology. 2018;44(3):289–99 (translated into Engl.)] . DOI: 10.7868/S0131164618030074
34. Dockx K., Van den Bergh V., Bekkers E.M.J., Ginis P., Rochester L., Hausdorff J.M., Mirelman A., Nieuwboer A. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database of Systematic Reviews. 2013, Issue 10. Art. No.: CD010760. DOI: 10.1002/14651858.CD010760
35. Green C.S., Bavelier D. Action-Video-Game Experience Alters the Spatial Resolution of Vision. Psychol. Sci. 2007;18(1):88–94. DOI: 10.1111/j.1467-9280.2007.01853.x 36. Gilbert CD, Li W. Adult Visual Cortical Plasticity. Neuron. 2012;75(2):250–64. DOI: 10.1016/j.neuron.2012.06.030
36. Pascual-Leone A., Freitas C., Oberman L., Horvath J.C., Halko M., Eldaief M., Bashir S., Vernet M., Shafi M., Westover B., Vahabzadeh-Hagh A.M., Rotenberg A. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011; 24:302– 15. DOI: 10.1007/s10548-011-0196-8
37. Tomaszczyk J.C., Green N.L., Frasca D., Colella B., Turner G.R., Christensen B.K., Green R.E. Negative Neuroplasticity in Chronic Traumatic Brain Injury and Im plications for Neurorehabilitation. Neuropsychol. Rev. 2014;24(4):409–27. DOI: 10.1007/s11065-014-9273-6
38. Serruyaa M.D., Kahana M.J. Techniques and devices to restore cognition. Behav. Brain Res. 2008;192(2):149–65. DOI: 10.1016/j.bbr.2008.04.007
39. Krawinkel L.A., Engel A.K., Hummel F.C. Modulating pathological oscillations by rhythmic non-invasive brain stimulation — a therapeutic concept? Front. Syst. Neurosci., 2015;9: art. ID 33. DOI: 10.3389/fnsys.2015.00033
40. Barlow J.S. Rhythmic activity induced by photic stimulation in relation to in trinsic alfa activity of the brain in man. Electroencephalogr. Clin. Neurophysiol. 1960;12:317–26. DOI: 10.1016/0013-4694(60)90005-5
41. Huang T.L., Charyton C. A comprehensive review of the psychological effects of brainwave entrainment. Alt. Ther. Health Med. 2008;14(5):38–50.
42. Manor B., Lipsitz L.A. Physiologic complexity and aging: implications for physi cal function and rehabilitation. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013;45:287–93. DOI: 10.1016/j.pnpbp.2012.08.020
43. Dauwels J., Srinivasan K., Ramasubba R., Toshimitsu M., Valatte F.-B., Latchou mane Ch., Jeomg J., Cichochi A. Slowing and Loss of Complexity in Alzheimer’s EEG: Two Sides of the Same Coin? Int. J. Alzh. Dis. Vol. 2011. Article ID 539621. 10 p. DOI: 10.4061/2011/539621
44. Li Y., Tong Sh., Liu D., Gai Y., Wang X., Wang J., Qui Y., Zhu Y. Abnormal EEG complexity in patients with schizophrenia and depression. Clin. Neurophysiol. 2008;119:1232–41. DOI: 10.1016/j.clinph.2008.01.104
45. Liu X., Zhang C., Ji Z., Ma Y., Shang X., Zhang Q., Zheng W., Zheng W., Li X., Gao J., Wang R., Wang J., Yu H. Multiple characteristics analysis of Alzheimer’s electroen cephalogram by power spectral density and Lempel–Ziv complexity. Cogn. Neurodyn. 2016;10(2):121–33. DOI: 10.1007/s11571-015-9367-8
46. Bola M., Gall C., Sabel B.A. Disturbed temporal dynamics of brain synchronization in vision loss. Cortex. 2015;67:134–46. DOI: 10.1016/j.cortex.2015.03.020
47. Ly T., Gupta N., Weinreb R.N. Kaufman P.L, Yücel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011;51(2):243–50. DOI: 10.1016/j.visres.2010.08.003
48. Shou T., Liu J., Wang W., Zhou Y., Zhao K. Differential dendritic shrinkage of α and β retinal ganglion cells in cats with chronic glaucoma. Invest. Ophthalmol. Vis. Sci. 2003;44:3005–10.
Review
For citations:
Zueva M.V., Kovalevskaya M.A., Donkareva O.V., Karankevich A.I., Tsapenko I.V., Taranov A.A., Antonyan V.B. Fractal Phototherapy in Neuroprotection of Glaucoma. Ophthalmology in Russia. 2019;16(3):317-328. (In Russ.) https://doi.org/10.18008/1816-5095-2019-3-317-328