Preview

Ophthalmology in Russia

Advanced search

Mitochondrial DNA as a Factor of Glaucomous Optic Neuropathy’s Development Mechanism

https://doi.org/10.18008/1816-5095-2019-4-479-486

Abstract

Currently, the mitochondrial component is becoming increasingly significant in the development and progression of glaucoma optic neuropathy. Since mitochondria have their own genetic apparatus, the study of qualitative and quantitative changes in mitochondrial DNA (mtDNA) becomes part of the disease diagnosis, in addition to studying the functional characteristics of the organelles alone. Moreover, the inability to explain the nature of the disease by known mutations of nuclear DNA contributes to the the study of mtDNA. In this review, we briefly discuss the mitochondrial genetics and the role of mitochondrial haplogroups in the diseases manifestation. We summarize the accumulated data on the qualitative and quantitative changes in mtDNA in patients with glaucoma. We discuss the approach to prevent the inheritance of mutant mtDNA as a part of assisted reproductive technologies, as well as the first steps towards the mtDNA heteroplasmy level manipulation and direct mtDNA editing.

About the Authors

I. R. Gazizova
Institute of Experimental Medicine
Russian Federation

MD, ophtalmologist

Akademika Pavlova str., 12, Saint Petersburg, 197376, Russian Federation



I. O. Mazunin
Center for Genomic Research, Immanuel Kant Baltic Federal University
Russian Federation

PhD, head of laboratory of molecular genetic technologies

A. Nevskogo str., 14, Kaliningrad, 236016, Russian Federation



T. N. Malishevskaya
Helmholtz National medical center of Eye Diseases
Russian Federation

MD, ophtalmologist, Head of Analytical Work

Sadovaya‑Chernogryazskaya str., 14/19, Moscow, 105062, Russian Federation



O. A. Kiseleva
Helmholtz National medical center of Eye Diseases
Russian Federation

MD, Head of Glaucoma Department

Sadovaya‑Chernogryazskaya str., 14/19, Moscow, 105062, Russian Federation



A. M. Gadzhiev
State instituition of health care of Leningrad region “Vsevolozhsk clinical interdistrict hospital”
Russian Federation

Ophtalmologist

Koltushskoe highway, 20, Vsevolozhsk, 188640, Russian Federation



Al.-M. Rindzhibal
Institute of Experimental Medicine
Russian Federation

рostgraduate

Akademika Pavlova str., 12, Saint Petersburg, 197376, Russian Federation



References

1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. DOI: 10.1136/bjo.2005.081224

2. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta‑analysis. Ophthalmol. 2014;121:2081–2090. DOI: 10.1016/j.ophtha.2014.05.013

3. Sharif N.A. Glaucomatous optic neuropathy treatment options: the promise of novel therapeutics, techniques and tools to help preserve vision. Neural Regen Res. 2018;13(7):1145–1150. DOI: 10.4103/1673‑5374.235017

4. Inman D.M., Harun‑Or‑Rashid M. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma. Front Neurosci. 2017;11:146. Published 2017 Mar 30. DOI: 10.3389/fnins.2017.00146

5. Calkins D.J., Horner P.J. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest Ophthalmol Vis Sci. 2012;53(5):2482–2484. DOI: 10.1167/iovs.12‑9483i

6. Casson R.J., Chidlow G., Wood J.P., Crowston J.G., Goldberg I. Definition of glaucoma: clinical and experimental concepts. Clin Experiment Ophthalmol. 2012;40:341–349. DOI: 10.1111/j.1442‑9071.2012.02773.x

7. Avdeev A.V., Alexandrov A.S., Bakunina N.A., Basinsky A.S. et al. A model of primary open‑angle glaucoma: manifestations and outcomes. Clinical medicine = Klinicheskaya medicina. 2014;12:64–72 (In Russ.)

8. Kong Y.X., Coote M.A., O’Neill E.C., Gurria L.U., Vie J., Garway‑Heath D., Medeiros F.A., Crowston J.G. Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination. Clin Experiment Ophthalmol. 2011;39:308–317. DOI: 10.1111/j.1442‑9071.2010.02462.x

9. Osborne N.N., Núñez‑Álvarez C., Joglar B., et al. Glaucoma: Focus on mitochondria in relation to pathogenesis and neuroprotection. Eur J Pharmacol. 2016;Sep:15(787):127–133. DOI: 10.1016/j.ejphar.2016.04.032

10. Yang X.J., Ge J., Zhuo Y.H. Role of mitochondria in the pathogenesis and treatment of glaucoma. Chin Med J (Engl). 2013;126(22):4358‑4365.

11. Kamel K., Farrell M., O’Brien C. Mitochondrial dysfunction in ocular disease: Focus on glaucoma. Mitochondrion. 2017;35:44–53. DOI: 10.1016/j.mito.2017.05.004

12. Munemasa Y., Kitaoka Y., Kuribayashi J., Ueno S. Modulation of mitochondria in the axon and soma of retinal ganglion cells in a rat glaucoma model. J Neurochem. 2010;115:1508–1519. DOI: 10.1111/j.1471‑4159.2010.07057.x

13. Ju W., Liu Q., Kim K., Crowston J.G., Linsey J.D., Agarwal N., Ellisman M.H., Perkins G. A., Weinreb R.N. Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC‑5 cells. Invest Ophthalmol & Visual Science. 2007;48:2145–2151. DOI: 10.1167/iovs.06‑0573

14. Barron M.J., Griffiths P., Turnbull D.M., Bates D., Nichols P. The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br J Ophthalmol. 2004;88(2):286–290. DOI: 10.1136/bjo.2003.027664

15. Izzotti A., Sacca S.C., Longobardi M. Cartiglia C. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Archives of Ophthalmology. 2010;128:724–730. DOI: 10.1001/archophthalmol.2010.87

16. Alekseev V., Gazizova I. Morphological changes in the mitochondria of cells of trabecular zone in patients with primary open‑angle glaucoma. 10th European Glaucoma Society Congress Copenhagen. (Accessed 09.04.2019).

17. Harun‑Or‑Rashid M., Pappenhagen N., Palmer P.G., Smith M.A., Gevorgyan V. Structural and Functional Rescue of Chronic Metabolically Stressed Optic Nerves through Respiration. The Journal of Neuroscience. 2018;38(22):5122–5139. DOI: 10.1523/jneurosci.3652‑17.2018

18. DiMauro S., Schon E., Carelli V., Hirano M. The clinical maze of mitochondrial neurology. Nature Reviews Neurology. 2013;9(8):429–444. DOI: 10.1038/nrneu‑rol.2013.126

19. Joseph J., Denisova N., Bielinski D., Fisher D., Shukitt‑Hale B. Oxidative stress protection and vulnerability in aging: putative nutritional implications for intervention. Mech Ageing Dev. 2000;116(2‑3):141–153. DOI: 10.1016/s0047‑6374(00)00128‑7

20. Olanow C. An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol. 1992;32(S1):S2–S9. DOI: 10.1002/ana.410320703

21. Chrysostomou V., Rezania F., Trounce I., Crowston J. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol. 2013;13(1):12–15. DOI: 10.1016/j.coph.2012.09.008

22. Ito Y., Di Polo A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion. 2017;36:186−192. DOI: 10.1016/j.mito.2017.08.014

23. Cordeiro M.F., Normando E.M., Cardoso M.J., Miodragovic S., Jeylani S., Davis B.M., Guo L., Ourselin S., A’hern R., Bloom P.A. Real‑time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain. 2017;140(6):1757−1767. DOI: 10.1093/brain/awx088

24. Lascaratos G., Garway‑Heath D., Willoughby C., Chau K., Schapira A. Mitochondrial dysfunction in glaucoma: Understanding genetic influences. Mitochondrion. 2012;12(2):202−212. DOI: 10.1016/j.mito.2011.11.004

25. Saccà S., Izzotti A., Rossi P., Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res. 2007;84(3):389−399. DOI: 10.1016/j.exer.2006.10.008

26. Cooper J., Mann V., Schapira A. Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing. J Neurol Sci. 1992;113(1):91−98. DOI: 10.1016/0022‑510X(92)90270‑U

27. Ojaimi J., Masters C., Opeskin K., McKelvie P., Byrne E. Mitochondrial respiratory chain activity in the human brain as a function of age. Mech Ageing Dev. 1999;111(1):39−47. DOI: 10.1016/S0047‑6374(99)00071‑8

28. Boveris A., Navarro A. Brain mitochondrial dysfunction in aging. IUBMB Life. 2008;60(5):308−314. DOI: 10.1002/iub.46

29. Navarro A., Boveris A. The mitochondrial energy transduction system and the aging process. American Journal of Physiology-Cell Physiology. 2007;292(2):C670−C686. DOI: 10.1152/ajpcell.00213.2006

30. Calandrella N., Scarsella G., Pescosolido N., Risuleo G. Degenerative and apoptotic events at retinal and optic nerve level after experimental induction of ocular hypertension. Mol Cell Biochem. 2007;301(1−2):155−163. DOI: 10.1007/s11010‑006‑9407‑0

31. Mazunin I.O., Volodko N.V. Leber hereditary optic neuropathy]. Annals of Ophthalmology = Vestnik oftal’mologii. 2018;134(2):92 (In Russ.). DOI: 10.17116/oftalma2018134292‑96

32. Kasahara A., Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014;24(12):761−770. DOI: 10.1016/j.tcb.2014.08.005

33. Chen M., Liu B., Ma J., Ge J., Wang K. Protective effect of mitochondria‑targeted peptide MTP‑131 against oxidative stress‑induced apoptosis in RGC‑5 cells. Mol Med Rep. 2017;15(4):2179−2185. DOI: 10.3892/mmr.2017.6271

34. Lv B., Chen T., Xu Z., Huo F., Wei Y., Yang X. Crocin protects retinal ganglion cells against H2O2‑induced damage through the mitochondrial pathway and activation of NF‑κB. Int J Mol Med. 2015;37(1):225−232. DOI: 10.3892/ijmm.2015.2418

35. Ju W.K., Kim K.Y., Lindsey J.D., Angert M., Patel A., Scott R.T., Liu Q., Crowston J.G., Ellisman M.H., Perkins G.A., Weinreb R.N. Elevated hydrostatic pressure triggers release of OPA1 and cytochrome C, and induces apoptotic cell death in differentiated RGC‑5 cells. Mol Vis. 2009;15:120–134.

36. Mazunin I., Volodko N., Starikovskaya E., Sukernik R. Mitochondrial genome and human mitochondrial diseases. Mol Biol (NY). 2010;44(5):665−681. DOI: 10.1134/s0026893310050018

37. Patrushev M., Kamenski P., Mazunin I. Mutations in mitochondrial DNA and approaches for their correction. Biochemistry (Moscow). 2014;79(11):1151−1160. DOI: 10.1134/S0006297914110029

38. Torroni A., Achilli A., Macaulay V., Richards M., Bandelt H. Harvesting the fruit of the human mtDNA tree. Trends in Genetics. 2006;22(6):339−345. DOI: 10.1016/j.tig.2006.04.001

39. Wallace D. Mitochondrial genetic medicine. Nat Genet. 2018;50(12):1642−1649. DOI: 10.1038/s41588‑018‑0264‑z

40. Latorre‑Pellicer A., Moreno‑Loshuertos R., Lechuga‑Vieco A.V., Sánchez‑Cabo F., Torroja C., Acín‑Pérez R., Calvo E., Aix E., González‑Guerra A., Logan A., Bernad-Miana M.L., Romanos E., Cruz R., Cogliati S., Sobrino B., Carracedo Á., Pérez‑Martos A., Fernández‑Silva P., Ruíz‑Cabello J., Murphy M.P., Flores I., Vázquez J., Enríquez J.A. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature. 2016;535(7613):561−565. DOI: 10.1038/nature18618

41. Morava E., Kozicz T., Wallace D. The phenotype modifier: is the mitochondrial DNA background responsible for individual differences in disease severity. J Inherit Metab Dis. 2019;42(1):3‑4. DOI: 10.1002/jimd.12050

42. Abu‑Amero K., Morales J., Bosley T. Mitochondrial Abnormalities in Patients with Primary Open‑Angle Glaucoma. Investigative Opthalmology & Visual Science. 2006;47(6):2533. DOI: 10.1167/iovs.05‑1639

43. Banerjee D., Banerjee A., Mookherjee S., Vishal M., Mukhopadhyay A., Sen A., Basu A., Ray K. Mitochondrial Genome Analysis of Primary Open Angle Glaucoma Patients. PLoS ONE. 2013;8(8):e70760. DOI: 10.1371/journal.pone.0070760

44. Collins D.W., Gudiseva H.V., Trachtman B.T., Jerrehian M., Gorry T., Merritt III W.T., Rhodes A.L., Sankar P.S., Regina M., Miller‑Ellis E., O’Brien J.M. Mitochondrial Sequence Variation in African‑American Primary Open‑Angle Glaucoma Patients. PLoS ONE. 2013;8(10):e76627. DOI: 10.1371/journal.pone.0076627

45. Jeoung J., Seong M., Park S., Kim D., Kim S., Park K. Mitochondrial DNA Variant Discovery in Normal‑Tension Glaucoma Patients by Next‑Generation Sequencing. Investigative Opthalmology & Visual Science. 2014;55(2):986. DOI: 10.1167/iovs.13‑12968

46. Sundaresan P., Simpson D., Sambare C., Duffy S., Lechner J., Dastane A., Dervan E.W., Vallabh N., Chelerkar V., Deshpande M., O’Brien C., McKnight A.J., Willoughby C.E. Whole‑mitochondrial genome sequencing in primary open‑angle glaucoma using massively parallel sequencing identifies novel and known pathogenic variants. Genetics in Medicine. 2014;17(4):279−284. DOI: 10.1038/gim.2014.121

47. Yi Q., Deng G., Zhou H., Wu G., Tang L. Mitochondrial transfer RNA variants and primary congenital glaucoma. Mitochondrial DNA. 2015:1−3. DOI: 10.3109/19401736.2015.1028050

48. Inoue‑Yanagimachi M., Himori N., Sato K., Kokubun T., Asano T., Shiga Y., Tsuda S., Kunikata H., Nakazawa T. Association between mitochondrial DNA damage and ocular blood flow in patients with glaucoma. British Journal of Ophthalmology. 2018:bjophthalmol‑2018‑312356. DOI: 10.1136/bjophthalmol‑2018‑312356

49. Singh L.N., Crowston J.G., Lopez Sanchez M.I., Van Bergen N.J., Kearns L.S., Hewitt A.W., Yazar S., Mackey D.A., Wallace D.C., Trounce I.A. Mitochondrial DNA Variation and Disease Susceptibility in Primary Open‑Angle Glaucoma. Investigative Opthalmology & Visual Science. 2018;59(11):4598. DOI: 10.1167/iovs.18‑25085

50. Gudiseva H., Pistilli M., Salowe R., Singh L.N., Collins D.W., Cole B., He J., Merriam S., Khachataryan N., Henderer J., Addis V., Cui Q.N., Sankar P.V., Miller‑Ellis E., Chavali V.R., Ying G.S., Wallace D., O’Brien J.M. The association of mitochondrial DNA haplogroups with POAG in African Americans. Exp Eye Res. 2019;181:85–89. DOI: 10.1016/j.exer.2019.01.015

51. Gorman G., McFarland R., Stewart J., Feeney C., Turnbull D. Mitochondrial donation: from test tube to clinic. The Lancet. 2018;392(10154):1191–1192. DOI: 10.1016/S0140‑6736(18)31868‑3

52. Eyre‑Walker A. Mitochondrial Replacement Therapy: Are Mito‑nuclear Interactions Likely To Be a Problem? Genetics. 2017;205(4):1365–1372. DOI: 10.1534/genetics.116.196436

53. Labarta E., de los Santos M.J., Herraiz S., Escribá M.J., Marzal A., Buigues A., Pellicer A. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization — a randomized pilot study. Fertil Steril. 2019;111(1):86–96. DOI: 10.1016/j.fertnstert.2018.09.023

54. Bacman S., Pereira C., Moraes C. Targeted Mitochondrial Genome Elimination. Mitochondrial Biology and Experimental Therapeutics. 2018:535–563. DOI: 10.1007/978‑3‑319‑73344‑9_24

55. Reddy P., Ocampo A., Suzuki K., Luo J., Bacman S.R., Williams S.L., Sugawara A., Okamura D., Tsunekawa Y., Wu J., Lam D., Xiong X., Montserrat N., Esteban C.R., Liu G.H., Sancho‑Martinez I., Manau D., Civico S., Cardellach F., O’Callaghan M., Campistol J., Zhao H., Campistol J.M., Moraes C.T., Belmonte J. Selective Elimination of Mitochondrial Mutations in the Germline by Genome Editing. Cell.

56. 2015;161(3):459–469. DOI: 10.1016/j.cell.2015.03.051

57. Yang Y., Wu H., Kang X., Liang Y., Lan T., Li T., Tan T., Peng J., Zhang Q., An G., Liu Y., Yu Q., Ma Z., Lian Y., Soh B.S. Targeted elimination of mutant mitochondrial DNA in MELAS‑iPSCs by mitoTALENs. Protein Cell. 2018;9(3):283–297. DOI: 10.1007/s13238‑017‑0499‑y

58. McCann B., Cox A., Gammage P., Stewart J., Zernicka‑Goetz M., Minczuk M. Delivery of mtZFNs into Early Mouse Embryos. Methods in Molecular Biology. 2018:215–228. DOI: 10.1007/978‑1‑4939‑8799‑3_16

59. Bacman S.R., Kauppila J.H., Pereira C.V., Nissanka N., Miranda M., Pinto M., Williams S.L., Larsson N.G., Stewart J.B., Moraes C.T. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med. 2018;24(11):1696–1700. DOI: 10.1038/s41591‑018‑0166‑8

60. Gammage P.A., Viscomi C., Simard M.L., Costa A.S., Gaude E., Powell C.A., Haute L.V., McCann B.J., Rebelo‑Guiomar P., Cerutti R., Zhang L., Rebar E.J., Zeviani M., Frezza C., Stewart J.B., Minczuk M. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med. 2018;24(11):1691–1695. DOI: 10.1038/s41591‑018‑0165‑9

61. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J., Charpentier E. A Programmable Dual‑RNA‑Guided DNA Endonuclease in Adаptive Bacterial Immunity. Science. 2012;337(6096):816–821. DOI: 10.1126/science.1225829

62. Gammage P., Moraes C., Minczuk M. Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR‑Ized. Trends in Genetics. 2018;34(2):101–110. DOI: 10.1016/j.tig.2017.11.001

63. Jo A., Ham S., Lee G., Lee Y., Kim S., Lee Y., Shin J., Le Y. Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed Res Int. 2015;2015:1–10. DOI: 10.1155/2015/305716

64. Loutre R., Heckel A., Smirnova A., Entelis N., Tarassov I. Can Mitochondrial DNA be CRISPRized: Pro and Contra. IUBMB Life. 2018;70(12):1233–1239. DOI: 10.1002/iub.1919

65. Verechshagina N., Nikitchina N., Yamada Y., Harashima H., Tanaka M., Orishchenko K., Mazunin I. Future of human mitochondrial DNA editing technologies. Mitochondrial DNA Part A. 2018;30(2):214–221. DOI: 10.1080/24701394.2018.1472773

66. Bian W., Chen Y., Luo J., Wang C., Xie S., Pei D. A knock‑in strategy for editing human and zebrafish mitochondrial DNA using mito‑CRISPR/Cas9 system. ACS Synth Biol. 2019. DOI: 10.1021/acssynbio.8b00411

67. Clay Montier L., Deng J., Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. Journal of Genetics and Genomics. 2009;36(3):125–131. DOI: 10.1016/s1673‑8527(08)60099‑5

68. Nissanka N., Minczuk M., Moraes C. Mechanisms of Mitochondrial DNA Deletion Formation. Trends in Genetics. 2019;35(3):235–244. DOI: 10.1016/j.tig.2019.01.001

69. Nissanka N., Bacman S., Plastini M., Moraes C. The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat Commun. 2018;9(1). DOI: 10.1038/s41467‑018‑04895‑1

70. Peeva V., Blei D., Trombly G., Corsi S., Szukszto M.J., Rebelo‑Guiomar P., Gammage P.A., Kudin A.P., Becker C., Altmüller J., Minczuk M., Zsurska G., Kunz W.S. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun. 2018;9(1). DOI: 10.1038/s41467‑018‑04131‑w

71. Komor A.C., Zhao K.T., Packer M.S., Gaudelli N.M., Waterbury A.L., Koblan L.W., Kim Y.B., Badran A.H., Liu D.R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G‑to‑T:A base editors with higher efficiency and product purity. Sci Adv. 2017;3(8):eaao4774. DOI: 10.1126/sciadv.aao4774

72. Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–471. DOI: 10.1038/nature24644

73. Rees H., Liu D. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics. 2018;19(12):770–788. DOI: 10.1038/s41576‑018‑0059‑1

74. Komor A., Badran A., Liu D. CRISPR‑Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. 2017;168(1–2):20–36. DOI: 10.1016/j.cell.2016.10.044

75. Kleinstiver B.P., Prew M.S., Tsai S.Q., Topkar V.V., Nguyen N.T., Zheng Z., Gonzales A., Li Z., Peterson R.T., Yeh J.R., Aryee M.J., Joung J.K. Engineered CRISPR‑Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–485. DOI: 10.1038/nature14592

76. Kleinstiver B.P., Prew M.S., Tsai S.Q., Nguyen N.T., Topkar V.V., Zheng Z., Joung J.K. Broadening the targeting range of Staphylococcus aureus CRISPR‑Cas9 by modifying PAM recognition. Nat Biotechnol. 2015;33(12):1293–1298. DOI: 10.1038/nbt.3404

77. Porteus M. A New Class of Medicines through DNA Editing. New England Journal of Medicine. 2019;380(10):947–959. DOI: 10.1056/nejmra1800729

78. Zarubina T.V., Lukk M.V. Antihypoxic and antioxidant effects of exogenous succinic acid and aminothiol succinate‑containing antihypoxants. Buii Exp Biol. Med. 2012;153(3):336–339. DOI: 10.1007/s10517‑012‑1709‑5

79. Kondrashova M.N., Hunderyakova N.V., Zakharchenko M.V. An original cytobiochemical method for identifying individual differences in the physiological state of an organism according to the complex characteristic (Pattern) of succinate dehydrogenase activity. Medline.ru Biomeditsinskii zhurnal. 2009;10:27–43 (In Russ.)

80. Mikhin V.P. Cytoprotection in cardiology: achieved succeesses and outlooks. The Russian Archives of internal medicine =Arkhiv vnutrennei meditsiny. 2014;1:44–49 (In Russ.)

81. Fedin A.I. Oxidative stress and the use of antioxidants in neurology. Neurology = Nervnye bolezni. 2002;1:15–18 (In Russ.)

82. Yellon D.M., Hausenloy D.J. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–1135. DOI: 10.1056/NEJMra071667

83. Izmailova T., Fedorova N., Petrichuk S., Basargina E. Mitochondrial disorders in children with chronic heart failure: effects of cytoflavin. Russian pediatrical journal = Rossiiskii pediatricheskii zhurnal. 2012;(4):21–22 (In Russ.)

84. Pochepen’ O. Evaluation of the effectiveness of cytoflavin in the treatment of toxic‑hypoxic encephalopathy after a severe injury. S.S. Korsakov Journal of Neurology and Psychiatry = Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova =Nevrologiya i psikhiatriya. 2010;10:23‑29. (In Russ.).

85. Gazizova I.R., Tikhomirova I.Yu. The role of mitochondrial dysfunction in glaucoma. Bashkortostan Medical Journal = Meditsinskii vestnik Bashkortostana. 2015;10(2):153–156 (In Russ.)

86. Gusev A.N., Krasnogorskaya V.N., Sorokina E.V., Guseva E.V. The results of the treatment of glaucoma optic neuropathy using the drugs Cytoflavin and Combilipen. Modern technologies in ophthalmology = Sovremennye tekhnologii v oftal’mologii. 2015;2:154–155 (In Russ.)

87. Malishevskaya T.N., Yusupov A.R., Shatskikh S.V., Filippova Yu.E., Antipina N.A., Klindyuk T.S., Bogdanova D.S., Kondrat’eva L.A. Study of the efficacy and safety of the use of the drug Cytoflavin in patients with primary open‑angle glaucoma. Annals of Ophthalmology = Vestnik oftal’mologii. 2019;135(2):83–92 (In Russ.)


Review

For citations:


Gazizova I.R., Mazunin I.O., Malishevskaya T.N., Kiseleva O.A., Gadzhiev A.M., Rindzhibal A. Mitochondrial DNA as a Factor of Glaucomous Optic Neuropathy’s Development Mechanism. Ophthalmology in Russia. 2019;16(4):479-486. (In Russ.) https://doi.org/10.18008/1816-5095-2019-4-479-486

Views: 1577


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)