Nutritional Supplements in the Prevention of Age-Related Retinal Pathology
https://doi.org/10.18008/1816-5095-2020-2-165-171
Abstract
Oxidative stress due to the imbalance in the production and detoxification of reactive oxygen species in antioxidant defence system of the body, as well as subsequent chronic inflammation, is believed to be associated with age-related eye diseases. Prevention of chronic degenerative diseases such as age-related macular degeneration (AMD) and primary open-angle glaucoma are of particular interest. In the last decade, tremendous success has been achieved in the treatment of age-related retinal pathology. However, these treatments are expensive and require frequent monitoring and, in some cases, injections, which place a huge burden on both the healthcare system and patients. Consequently, considerable interest remains in preventing or slowing the progression of these diseases. Epidemiological studies have shown that diet is a modifiable risk factor for AMD, and nutritional modification with food antioxidant supplements is a particularly attractive method of prevention because of its potential benefits and relatively low cost. A large number of experimental studies, including clinical studies in animals and humans, have provided supporting evidence that antioxidant food additives inhibit the oxidation of macromolecules, as well as an inflammatory response that occurs in the pathogenesis of involutional retinal pathology, which ultimately inhibits its development and progression. This review discusses the role of antioxidant dietary supplements in the prevention of age-related retinal pathology.
About the Authors
M. H. DurzhinskayaRussian Federation
Durzhinskaya Madina H.
PhD, research fellow
Rossolimo str., 11A, B, Moscow, 119021
M. V. Budzinskaya
Russian Federation
Budzinskaya Maria V.
MD, deputy director for research; Associate Professor, department of ophthalmology
Rossolimo str., 11A, B, Moscow, 119021
Sovetskaya str., 4, Tver, 170100
References
1. Flaxman S.R., Bourne R.R.A., Resnikoff S., Ackland P., Braithwaite T., Cicinelli M.V., et. al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health. 2017;5:e1221-e1234. DOI: 10.1016/S2214-109X(17)30393-5
2. Sideri O., Tsaousis K.T., Li H.J., Viskadouraki M., Tsinopoulos I.T. The potential role of nutrition on lens pathology: A systematic review and meta-analysis. Surv. Ophthalmol. 2019;64:668–678. DOI: 10.1016/j.survophthal.2019.03.003
3. Loskutova E., O’Brien C., Loskutov I., Loughman J. Nutritional supplementation in the treatment of glaucoma: A systematic review. Surv. Ophthalmol. 2019;64:195– 216. DOI: 10.1016/j.survophthal.2018.09.005
4. Nangia V., Jonas J.B., George R. on behalf of the Vision Loss Expert Group of the Global Burden of Disease Study, et al Prevalence and causes of blindness and vi sion impairment: magnitude, temporal trends and projections in South and Central Asia British. Journal of Ophthalmology. 2019;103:871–877. DOI: 10.1136/bjophthal- mol-2018-312292
5. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic re view and meta-analysis. Ophthalmology. 2014;121:2081–2090. DOI: 10.1016/j.oph tha.2014.05.013
6. Aslam T., Delcourt C., Holz F., García-Layana A., Leys A., Silva R.M., Souied E. European survey on the opinion and use of micronutrition in age-related macular degeneration: 10 years on from the Age-Related Eye Disease Study. Clinical ophthalmology. 2014;8:2045–2053. DOI: 2147/OPTH.S63937
7. Lawrenson J., Downie L. Nutrition and Eye Health. Nutrients. 2019;11: 2123. DOI: 10.3390/nu11092123
8. Zhang X., Bullard K.M., Cotch M.F., Wilson M.R., Rovner B.W., McGwin G. Jr., et. al. Association between depression and functional vision loss in persons 20 years of age or older in the United States, NHANES 2005-2008. JAMA Ophthalmol. 2013;131(5):573–581. DOI: 10.1001/jamaophthalmol.2013.2597
9. Tan B.L., Norhaizan M.E., Liew W.P., Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol. 2018;9:1162. DOI: 10.3389/fphar.2018.01162
10. Sayama A., Okado K., Nakamura K., Kawaguchi T., Iguchi T., Makino T., Mori K. UNC569-induced Morphological Changes in Pigment Epithelia and Photorecep tor Cells in the Retina through MerTK Inhibition in Mice. Toxicologic Pathology. 2018;46(2):193–201. DOI: 10.1177/0192623317749469
11. Moreno-García A., Kun A., Calero O., Medina M., Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci. 2018;12:464. DOI: 10.3389/fnins.2018.00464
12. Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell. Mol. Life Sci. 2020;77(5):789–805. DOI: 10.1007/s00018-019-03420-x
13. Ly A., Nivison-Smith L., Assaad N., Kalloniatis M. Fundus Autofluorescence in Age-related Macular Degeneration. Optom Vis Sci. 2017;94(2):246–259. DOI: 10.1097/OPX.0000000000000997
14. Ablonczy Z., Higbee D., Anderson D.M., Dahrouj M., Grey A.C., Gutierrez D., et. al. Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2013;54(8):5535–5542. DOI: 10.1167/iovs.13-12250
15. Handa J.T., Bowes Rickman C., Dick A.D., Gorin M.B., Miller J.W., Toth C.A., et. al. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun. 2019;10(1):3347. DOI: 10.1038/s41467-019-11262-1
16. Evans J. R., Lawrenson J.G. Antioxidant vitamin and mineral supplements for preventing age‐related macular degeneration. Cochrane Database of Systematic Reviews. 2012;14(11):CD000254. DOI: 10.1002/14651858.CD000254.pub3
17. Datta S., Cano M., Ebrahimi K., Wang L., Handa J.T. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Progress in Retinal and Eye Research. 2017;60:201–218. DOI: 10.1016/j.preteyeres.2017.03.002
18. Sun M., Finnemann S.C., Febbraio M., Shan L., Annangudi S.P., Podrez E.A., et. al. Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress condi tions. The Journal of Biological Chemistry. 2006;281(7):4222–4230. DOI: 10.1074/jbc.M509769200
19. Mares J. Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annu Rev Nutr. 2016;36:571–602. DOI: 10.1146/annurev-nutr-071715-051110
20. Buscemi S., Corleo D., Di Pace D. Petroni M.L., Satriano A., Marchesini G. The Ef fect of Lutein on Eye and Extra-Eye Health. Nutrients. 2018;10(9):1321. DOI: 10.3390/nu10091321
21. Михайлова М.А., Сизова М.В., Шеланкова А.В. Патогенез ретинальных венозных окклюзий. Вестник офтальмологии. 2014;130(2):88–92. [Mikhaylova M.A., Sizova M.V., Shelankova A.V. Pathogenesis of retinal vein occlusions. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2014;130(2):88– 92 (In Russ.)].
22. Carneiro A., Andrade J.P. Nutritional and lifestyle interventions for age-related macular degeneration: a review. Oxidative Medicine and Cellular Longevity. 2017;6469138. DOI: 10.1155/2017/6469138
23. Rezende F.A., Lapalme E., Qian C.X., Smith L.E., SanGiovanni J.P., Sapieha P. Omega-3 supplementation combined with anti-vascular endothelial growth factor lowers vitreal levels of vascular endothelial growth factor in wet age-related macular degeneration. Am J Ophthalmol. 2014;158(5):1071–1078. DOI: 10.1016/j.ajo.2014.07.036
24. Semeraro F., Gambicordi E., Cancarini A., Morescalchi F., Costagliola C., Russo A. Treatment of exudative age-related macular degeneration with aflibercept combined with pranoprofen eye drops or nutraceutical support with omega-3: A randomized trial. Br J Clin Pharmacol. 2019;85: 908–913. DOI: 10.1111/bcp.13871
25. Stahl A., Sapieha P., Connor K.M. Sangiovanni J.P., Chen J., Aderman C.M., Willett K.L., Krah N.M., Dennison R.J., Seaward M.R., Guerin K.I., Hua J., Smith L.E. Short communication: PPAR gamma mediates a direct antiangiogenic effect of omega 3-PUFAs in proliferative retinopathy. Circ Res. 2010;107(4):495–500. DOI: 10.1161/CIRCRESAHA.110.221317
26. Connor K.M., SanGiovanni J.P., Lofqvist C., Aderman C.M., Chen J., Higuchi A., et. al. Increased dietary intake of omega‐3‐polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007;13(7):868–873. DOI: 10.1038/nm1591
27. Cohen L.P., Pasquale L.R. Clinical characteristics and current treatment of glaucoma. Cold Spring Harb Perspect Med. 2014;4(6):a017236. DOI: 10.1101/cshperspect.a017236
28. Sayner R., Carpenter D.M., Blalock S.J. Robin A.L., Muir K.W., Hartnett M.E., et. al. Accuracy of Patient-reported Adherence to Glaucoma Medications on a Visual Analog Scale Compared With Electronic Monitors. Clin Ther. 2015;37(9):1975–1985. DOI: 10.1016/j.clinthera.2015.06.008
29. Nucci C., Di Pierro D., Varesi C., Ciuffoletti E., Russo R., Gentile R., Cedrone C., Pinazo Duran M.D., Coletta M., Mancino R. Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol. Vis. 2013;19:1841–1846.
30. Sorkhabi R., Ghorbanihaghjo A., Javadzadeh A., Rashtchizadeh N., Moharrery M. Oxidative DNA damage and total antioxidant status in glaucoma patients. Mol. Vis. 2011;17:41–46.
31. Тренделева Т.А., Аливердиева Д.А., Звягильская Р.А. Механизмы определения низкого уровня кислорода у млекопитающих и дрожжей и их адаптационные ответы (обзор). Биохимия. 2014;79(8):750–760. [Trendeleva T.A., Zvyagilskaya R.A., Aliverdieva D.A. Mechanisms of sensing and adaptive responses to low oxygen conditions in mammals and yeasts. Biochemistry = Biohimiya. 2014;79(8):750–760 (In Russ.)].
32. Yıldırım O., Ates N., Ercan B., Muşlu N., Unlü A., Tamer L., Atik U., Kanik A. Role of oxidative stress enzymes in open-angle glaucoma. Eye. 2005;19:580–583. DOI: 10.1038/sj.eye.6701565
33. Goyal A., Srivastava A., Sihota R., Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr. Eye Res. 2014;39:823–829. DOI: 10.3109/02713683.2011.556299
34. Sacca S.C., Pascotto A., Camicione P., Capris P., Izzotti A. Oxidative DNA damage in the human trabecular meshwork: Clinical correlation in patients with primary open-angle glaucoma. Arch. Ophthalmol. 2005;123:458–463. DOI: 10.1001/archopht.123.4.458
35. Izzotti A., Sacca S.C., Cartiglia C., De Flora S. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am. J. Med. 2003. 114:638–646. DOI: 10.1016/s0002-9343(03)00114-1
36. Tezel G. The immune response in glaucoma: A perspective on the roles of oxidative stress. Exp. Eye Res. 2011;93:178–186. DOI: 10.1016/j.exer.2010.07.009
37. Maruyama I., Ohguro H., Ikeda Y. Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients. Invest Ophthalmol Vis Sci. 2000;41:1657–1665.
38. Johnson E.C., Morrison J.C. Friend or foe? Resolving the impact of glial responses in glaucoma. J Glaucoma. 2009;18:341–353. DOI: 10.1097/IJG.0b013e31818c6ef6
39. Bernstein P.S., Li B., Vachali P.P., Gorusupudi A., Shyam R., Henriksen B.S. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in retinal and eye research. 2016;50:34–66. DOI: 10.1016/j.preteyeres
40. Eggersdorfer M., Wyss A. Carotenoids in human nutrition and health. Archives of biochemistry and biophysics. 2018;652:18–26. DOI: 10.1016/j.abb.2018.06.001
41. Kijlstra A., Tian Y., Kelly E.R., Berendschot T.T. Lutein: more than just a filter for blue light. Progress in retinal and eye research. 2012;31(4):303–315. DOI: 10.1016/j.preteyeres
42. Eisenhauer B., Natoli S., Liew G., Flood V.M. Lutein and Zeaxanthin-Food Sources, Bioavailability and Dietary Variety in Age-Related Macular Degeneration Protection. Nutrients. 2017;9(2):120. DOI: 10.3390/nu9020120
43. Mukhtar S., Ambati B.K. The value of nutritional supplements in treating Age-Related Macular Degeneration: a review of the literature. Int Ophthalmo. 2019;39:2975– 2983. DOI: 10.1007/s10792-019-01140-6
44. Филиппова О.В. Выбор лекарственной формы для лечения и профилактики патологий сетчатки. РМЖ. Клиническая офтальмология. 2019;4:211–216. [Filippova O.V. Selecting drug formulation for the treatment and prevention of retinal disorders. Clinical ophthalmology = Klinicheskaya oftal’mologiya. 2019;19(4):211–216 (In Russ.)]. DOI: 10.32364/2311-7729-2019-19-4-211-216
45. Scripsema N.K., Hu D.N., Rosen R.B. Lutein, zeaxanthin and meso-zeaxanthin in the clinical management of eye disease. J. Ophthalmol. 2015. 2015:865179. DOI: 10.1155/2015/865179
46. Liu R., Wang T., Zhang B., et al. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014;56(1):252–258. DOI: 10.1167/iovs.14-15553
47. Yoserizal M., Hirooka K., Yoneda M. Associations of nutrient intakes with glaucoma among Japanese Americans. Medicine (Baltimore). 2019. 98(49):e18314. DOI: 10.1097/MD.0000000000018314
48. Jung K.I., Kim Y.C., Park C.K. Dietary niacin and open-angle glaucoma: The Korean National Health and Nutrition Examination Survey. Nutrients. 2018;10(4):ii:E387. DOI: 10.3390/nu10040387
49. Ramdas W.D., Wolfs R.C., Kiefte-de Jong J.C. Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study. Eur J Epidemiol 2012;27:385–393. DOI: 10.1007/s10654-012-9672-z
50. Cho H.-K. Neuroprotective effect of ginkgo biloba extract against hypoxic retinal ganglion cell degeneration in vitro and in vivo. Journal of Medicinal Food. 2019;22(8):771–778. DOI: 10.1089/jmf.2018.4350
51. Lawler T., Liu Y., Christensen K., Vajaranant T.S., Mares J. Dietary antioxidants, macular pigment, and glaucomatous neurodegeneration: a review of the evidence. Nutrients. 2019;11:1002. DOI: 10.3390/nu11051002
52. Mozaffarieh M., Grieshaber M.C., Orgul, S., Flammer J. The potential value of natural antioxidative treatment in glaucoma. Surv. Ophthalmol. 2008;53:479–505. DOI: 10.1016/j.survophthal.2008.06.006
53. Kang J.H., Pasquale L.R., Willett W., Rosner B., Egan K.M., Faberowski N., Hankinson S.E. Antioxidant intake and primary open-angle glaucoma: A prospective study. Am. J. Epidemiol. 2003;158:337–346. DOI: 10.1093/aje/kwg167
54. Wang S.Y., Singh K., Lin S.C. Glaucoma and vitamins A, C, and E supplement intake and serum levels in a population-based sample of the United States. Eye. 2013;27:487–494. DOI: 10.1038/eye.2013.10
55. Yong J. J., et al. Ocular Nutritional Supplements: Are Their Ingredients and Manufacturers’ Claims Evidence-Based? Ophthalmology. 2015;122(3):595–599. DOI: 10.1016/j.ophtha.2014.09.039
Review
For citations:
Durzhinskaya M.H., Budzinskaya M.V. Nutritional Supplements in the Prevention of Age-Related Retinal Pathology. Ophthalmology in Russia. 2020;17(2):165-171. (In Russ.) https://doi.org/10.18008/1816-5095-2020-2-165-171