Diagnostic Possibilities of Standard Automatic and FunctionSpecific Perimetry (HFA, Octopus) in the Study of the Visual Field in Patients with Compression in the Chiasm-Sellar Region
https://doi.org/10.18008/1816-5095-2020-2-238-248
Abstract
The literature review presents the results of a static perimetry for the study of the visual field in patients with compression in the chiasm-sellar region on the Humphrey Visual Field Analyzer (HFA) and Octopus. These models of perimeters are recognized as the “gold standard” and are most widely used in the global ophthalmic practice. The analysis of research results using traditional and function-specific perimetry with selective stimulation of the magnocellular and koniocellular (frequency-doubling technology perimetry, FDT; short-wavelength automated perimetry, SWAP) visual pathways was performed. The literature data analysis allows us to conclude that the static perimetry for the study of the visual field in patients with chiasmatic compression is carried out quite widely and is informative. But despite this, there are no generally accepted recommendations on the use of certain testing strategies and programs for the diagnosis and further dynamic observation of changes in the visual field in patients with this pathology. In this regard, it is advisable to conduct further studies that will allow the formation of standard perimetric protocols for diagnosing and monitoring visual field defects in patients with compression in the chiasm-sellar region based on a comparative analysis of the diagnostic informativity of various strategies and programs.
About the Authors
N. A. GavrilovaRussian Federation
Gavrilova Natalia A.
MD, PhD, Professor, head of the eye diseases department
Delegatskaya str., 20, p. 1, Moscow, 127473
E. E. Ioyleva
Russian Federation
Ioyleva Elena E.
MD, PhD, Professor of the eye diseases department
Beskudnikovsky blvd, 59A, Moscow, 127486, Russian Federation
Delegatskaya str., 20, p. 1, Moscow, 127473
N. S. Gadzhieva
Russian Federation
Gadzhieva Nuria S.
PhD, Assistant Professor of the eye diseases department
Delegatskaya str., 20, p. 1, Moscow, 127473
O. E. Tishchenko
Russian Federation
Tishchenko Ol’ga E.
PhD, Assistant Professor of the eye diseases department
Delegatskaya str., 20, p. 1, Moscow, 127473
N. Yu. Kutrovskaya
Russian Federation
Kutrovskaya Natalia Y.
PhD, assistant of the eye diseases department
Delegatskaya str., 20, p. 1, Moscow, 127473
A. V. Zinov’eva
Russian Federation
Zinov’eva Aleksandra V.
resident of the eye diseases department
Delegatskaya str., 20, p. 1, Moscow, 127473
References
1. Pereira A., Monteiro M.L. Computerized and manual perimetry in patients with severe temporal visual field defects due to suprasellar tumors. Arq Bras Oftalmol. 2005;(68):587–591. DOI: 10.1590/S0004-27492005000500003
2. Cannavó S., De Natale R., Curtó L., Li Calzi L., Trimarchi F. Effectiveness of computer-assisted perimetry in the follow-up of patients with pituitary microadenoma responsive to medical treatment. Clin Endocrinol. 1992;(37):157–161. DOI: 10.1111/j.1365-2265.1992.tb02300.x
3. Cannavó S., De Natale R., Princi P., Li Calzi L., Aragona A., Trimarchi F. Effectiveness of computer-assisted perimetry in the diagnosis of pituitary adenomas. Clin Endocrinol. 1989;(31):673–678. DOI: 10.1111/j.1365-2265.1989.tb01292.x
4. Shen M.Q., Ye W., Zhang Y.Y., Chen J. Visual field defects in 169 cases of pituitary adenomas. Chung-Hua Yen Ko Tsa Chih. 2009;(45):1074–1079. DOI: 10.3760/cma.j.issn.0412-4081.2009.12.005
5. Fujimoto N., Saeki N., Miyauchi O., Adachi-Usami E. Criteria for early detection of temporal hemianopia in asymptomatic pituitary tumor. Eye. 2002;(16):731–738. DOI: 10.1038/sj.eye.6700165
6. Rowe F.J., Cheyne C.P., García-Fiñana M., Noonan C.P., Howard C., Smith J., Adeoye J. Detection of Visual Field Loss in Pituitary Disease: Peripheral Kinetic Versus Central Static. Neuro-Ophthalmology. 2015;(39):116–124. DOI: 10.3109/01658107.2014.990985
7. Fledelius H.C. Temporal visual field defects are associated with monocular inattention in chiasmal pathology. Acta Ophthalmol. 2009;(87):769–775. DOI: 10.1111/j.1755-3768.2008.01328.x
8. Hudson H., Rissell C., Gauderman W.J., Feldon S.E. Pituitary tumor volume as a predictor of postoperative visual field recovery. Quantitative analysis using automated static perimetry and computed tomography morphometry. J Clin Neuroophthalmol. 1991;(11):280–283.
9. Thomas R., Shenoy K., Seshadri M.S. Muliyil J., Rao A., Paul P. Visual field defects in non-functioning pituitary adenomas. Indian Journal of Ophthalmology. 2002;(50):127–130.
10. Gedik S., Gur S., Atalay B., Colak M., Altinors N., Akova Y.A. Humphrey visual field analysis, visual field defects, and ophthalmic findings in patients with macro pituitary adenoma. Saudi Med J. 2007;(28):1380–1384.
11. Lee I.H., Miller N.R., Zan E., Tavares F., Blitz A.M., Sung H., Yousem D.M., Boland M.V. Visual defecs in patients with pituitary adenomas: the myth of bitemporal hemianopsia. American Journal of Roentgenology. 2015;(205):512–518. DOI: 10.2214/AJR.15.14527
12. Zhong Y., Shen X., Min Y. The role of blue-on-yellow perimetry in patients with pituitary tumor. Annals of Ophthalmology. 2009;(41):40–43.
13. Huang C.Q., Carolan J., Redline D., Taravati P., Woodward K.R., Johnson C.A., Wall M., Keltner J.L. Humphrey Matrix perimetry in optic nerve and chiasmal disorders: comparison with Humphrey SITA standard 24-2. Invest Ophthalmol. 2008;(49):917–923. DOI: 10.1167/iovs.07-0241
14. Noval S., Contreras I., Rebolleda G., Muñoz-Negrete F.J., Ruiz de Zárate B. A comparison between Humphrey and frequency doubling perimetry for chiasmal visual field defects. Eur J Ophthalmol. 2005;(15):739–745.
15. Monteiro M.L., Moura F.C., Cunha L.P. Frequency doubling perimetry in patients with mild and moderate pituitary tumor-associated visual field defects detected by conventional perimetry. Arq Bras Oftalmol. 2007;(70):323–329. DOI: 10.1590/S0004-27492007000200024
16. Yoon M.K., Hwang T.N., Day S., Hong J., Porco T., McCulley T.J. Comparison of Humphrey Matrix frequency doubling technology to standard automated perimetry in neuro-ophthalmic disease. Middle East Afr J Ophthalmol. 2012;(19):211–215. DOI: 10.4103/0974-9233.95254
17. Jones J., Ruge J. Intraoperative magnetic resonance imaging in pituitary macroadenoma surgery: an assessment of visual outcome. Neurosurg. 2007;(23):E12. DOI: 10.3171/FOC-07/11/E12
18. Alleyne CH, Jr., Barrow D.L., Oyesiku N.M. Combined transsphenoidal and pterional craniotomy approach to giant pituitary tumors. Surgical Neurology. 2002;(57):380–390. DOI: 10.1016/S0090-3019(02)00705-X
19. Astradsson A., Wiencke A.K., Munck af Rosenschold P., Engelholm S.-A., Ohlhues L., Roed H., Juhler M. Visual outcome after fractionated stereotactic radiation therapy of benign anterior skull base tumors. J Neurooncol. 2014;(118):101–108. DOI: 10.1007/s11060-014-1399-0
20. Astradsson A., Munck af Rosenschold P., Feldt-Rasmussen U., Poulsgaard L., Wiencke A.K., Ohlhues L., et. al. Visual outcome, endocrine function and tumor control after fractionated stereotactic radiation therapy of craniopharyngiomas in adults: findings in a prospective cohort. Acta Oncol. 2017;(56):415–421. DOI: 10.1080/0284186X.2016.1270466
21. Ma J., Zhao C., Wang R., Feng F., Wang E., You H., Jiang Y., Zhang M., Zhong Y. Visual field improvement after pituitary tumor surgery in patients with McCune–Albright syndrome. Journal of Neuro-Ophthalmology. 2013;(33):26–29. DOI: 10.1097/WNO.0b013e3182726b69
22. Danesh-Meyer H.V., Carroll S.C., Foroozan R., Savino P.J., Fan J., Jiang Y., Vander Hoorn S. Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci. 2006;(47):4827–4835. DOI: 10.1167/iovs.06-0327
23. Monteiro M.L., Cunha L.P., Costa-Cunha L.V., Maia O.O. Jr., Oyamada M.K. Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression. Invest Ophthalmol Vis Sci. 2009;(50):3535–3541. DOI: 10.1167/iovs.08-3093
24. Moura F.C., Costa-Cunha L.V., Malta R.F., Monteiro M.L. Relationship between visual field sensitivity loss and quadrantic macular thickness measured with Stratus-Optical coherence tomography in patients with chiasmal syndrome. Arq Bras Oftalmol. 2010;(73):409–413. DOI: 10.1590/S0004-27492010000500004
25. Tang Y., Qu Y.Z., Yang L., Wang J., Wang L.N., Fang M., Lu W. Assessing the damage to visual function by optical coherence tomography and the visual field test in Saddle area tumor patients. Chung-Hua Yen Ko Tsa Chih. 2012;(48):1001–1004. DOI: 10.3760/cma.j.issn.0412-4081.2012.11.010
26. Danesh-Meyer H.V., Papchenko T., Savino P.J., Law A., Evans J., Gamble G.D. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci. 2008;(49):1879–1885. DOI: 10.1167/iovs.07-1127
27. Danesh-Meyer H.V., Wong A., Papchenko T., Matheos K., Stylli S., Nichols A., Frampton C., Daniell M., Savino P.J., Kaye A.H. Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci. 2015;(22):1098–1104. DOI: 10.1016/j.jocn.2015.02.001
28. Ohkubo S., Higashide T., Takeda H., Murotani E., Hayashi Y., Sugiyama K. Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn J Ophthalmol. 2012;(56):68–75. DOI: 10.1007/s10384-011-0093-4
29. Yum H.R., Park S.H., Park H.Y., Shin S.Y. Macular ganglion cell analysis determined by Cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS One. 2016;(11): e0153064. DOI: 10.1371/journal.pone.0153064
30. Zhang L., Sun C., Sun X. The clinical features and value of macular ganglion cell complex thickness patterns in patients with optic chiasma lesion. Chung-Hua Yen Ko Tsa Chih. 2016;(52):335–342. DOI: 10.1371/journal.pone.0153064
31. Tieger M.G., Hedges T.R. 3rd, Ho J., Erlich-Malona N.K., Vuong L.N., Athappilly G.K., Mendoza-Santiesteban C.E. Ganglion Cell Complex Loss in Chiasmal Compression by Brain Tumors. Journal of Neuro-Ophthalmology. 2017;(37):7–12. DOI: 10.1097/WNO.0000000000000424
Review
For citations:
Gavrilova N.A., Ioyleva E.E., Gadzhieva N.S., Tishchenko O.E., Kutrovskaya N.Yu., Zinov’eva A.V. Diagnostic Possibilities of Standard Automatic and FunctionSpecific Perimetry (HFA, Octopus) in the Study of the Visual Field in Patients with Compression in the Chiasm-Sellar Region. Ophthalmology in Russia. 2020;17(2):238-248. (In Russ.) https://doi.org/10.18008/1816-5095-2020-2-238-248