Preview

Ophthalmology in Russia

Advanced search

Case Report of Myopia Correction by ReLEx SMILE in a Patient with Superficial Corneal Opacity

https://doi.org/10.18008/1816-5095-2020-2-295-299

Abstract

Introduction. Reduced corneal transparency leads to dissipation of energy of the femtosecond laser (FSL), which may complicate the formation of the intrastromal incision and limits the use of FSL in eyes with corneal opacities and scars. The purpose of this work is to demonstrate the possibility of successful ReLEx SMILE in a patient with superficial corneal opacity located in the paracentral zone.
Case report. Patient R., 29 years old, complained of decreased vision in both eyes since childhood. Visual acuity OD = 0.1 sph –2.75D = 1.0; OS = 0.1 sph –3.50 D cyl –0.75D ax 165° = 1.0. Biomicroscopy of the right eye visualized a superficial semi-transparent corneal opacity of 5 x 3 mm located at 5.30–6 hours at a distance of 1.3 mm from the optical center. According to the anterior segment optical coherence tomography (AS-OCT) the depth of the opacity was 73–78 microns and was limited by the Bowman’s membrane. ReLEx SMILE for myopia correction was performed on both eyes with 6.7 mm lenticule diameter at a depth of 120 µm, which covered the opacity area by 1.1 mm. The surgery was standard and uncomplicated. Seven days postoperatively the patient did not complain. Uncorrected visual acuity (UCVA) was 1.0 for both eyes (and binocularly it was 1.2). According to the AS-OCT data, a hyperreflective line of the interface zone was visualized on the right eye at the depth of 141–147 µm; the opacified superficial corneal layers were detected in the lower paracental zone over the interface line. In one month after the surgery the visual acuity did not change: UCVA = 1.0 in both eyes (binocularly 1.2).
Conclusion. ReLEx SMILE technology can be considered as one of the options for myopia correction in patients with superficial corneal opacity located in the paracental zone. More observations are required to evaluate the effectiveness of this technology on corneas with paracentral opacities different in sizes and located at different depths.

About the Authors

N. V. Maychuk
The S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation
Maychuk Nataliya V.
PhD, senior researcher of department of laser refractive surgery
Beskudnikovsky blvd, 59А, Moscow, 127486


I. A. Mushkova
The S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation
Mushkova Irina A.
MD, PhD, head of department of laser refractive surgery
Beskudnikovsky blvd, 59А, Moscow, 127486


A. M. Mayorova
The S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation
Mayorova Aleksandra M.
PhD, junior researcher of department for clinical and functional diagnostics
Beskudnikovsky blvd, 59А, Moscow, 127486


A. A. Shpak
The S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation
Shpak Alexander A.
MD, PhD, head of department for clinical and functional diagnostics
Beskudnikovsky blvd, 59А, Moscow, 127486


References

1. Sletten K.R., Yen K.G., Sayegh S., Loesel F., Eckhoff C., Horvath C., et. al. An in vivo model of femtosecond laser intrastromal refractive surgery. Ophthalmic Surg Lasers. 1999;30:742–749.

2. Kim P., Sutton G.L., Rootman D.S. Applications of the femtosecond laser in corneal refractive surgery. Curr Opin Ophthalmol. 2011;22:238–244. DOI: 10.1097/ICU.0b013e3283477c9c

3. Soong H.K., Malta J.B. Femtosecond lasers in ophthalmology. Am J Ophthalmol. 2009;147:189–197. DOI: 10.1016/j.ajo.2008.08.026

4. Homer N., Jurkunas U.V. The Use of Femtosecond Laser in Refractive and Cataract Surgery International ophthalmology clinics. Int Ophthalmol Clin. 2017;57(4);1–10. DOI: 10.1097/IIO.0000000000000197

5. Perente I., Utine C.A., Cakir H. Yilmaz O.F. Complicated flap creation with femtosecond laser after radial keratotomy. Cornea. 2007;26(9);1138–1140. DOI: 10.1097/ICO.0b013e318123f2b1

6. Leccisotti A. Femtosecond laser assisted hyperopic laser in situ keratomileusis with tissue-saving ablation: analysis of 800 cases J. Cataract Refract. Surg. 2014;40;1122–1130. DOI: 10.1016/j.jcrs.2013.11.031

7. Munoz G., Albarran-Diego C., Sakla H.F. Pérez-Santonja J.J., Alió J.L. Femtosecond laser in situ keratomileusis after radial keratotomy J. Cataract Refract. Surg. 2006;32(8);1270–1275. DOI: 10.1016/j.jcrs.2006.02.061

8. Rush S.W., Rush R.B. One-year outcomes of femtosecond laser-assisted LASIK following previous radial keratotomy J. Refract. Surg. 2016;32(1);15–19. DOI: 10.3928/1081597X-20151207-07

9. Chang J.S. Complications of sub-Bowman’s keratomileusis with a femtosecond laser in 3009 eyes. J Cataract Refract Surg. 2008;24(1):S97–S101. DOI: 10.3928/1081597X-20080101-17

10. Мушкова И.А., Семенов А.Д., Соболев Н.П., Захарова И.А., Каримова А.Н., Майчук Н.В. Использование фемтосекундного лазера в формировании лоскута при эксимерлазерной коррекции индуцированных аметропий после оптико-реконструктивных операций с имплантацией иридохрусталиковых диафрагм. Вестник ОГУ. 2014;12;173. [Mushkova I.A., Semyonov A.D., Sobolev N.P., Zakharova I.A., Karimova A.N., Maychuk N.V. Femtosecond laser in the formation of the flap during excimer laser correction of induced ametropia after optical reconstructive surgery with the implantation of iridium-crystalline diaphragms]. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2014;12;173 (In Russ.)].

11. Basic and Clinical Science Course (BCSC) 2014-2015: Section 8 — External disease and cornea. San Francisco: American Academy of Ophthalmology; 2014:22.

12. Zhang, S., Xu, H., Zheng, K., Zhao, J., Jian, W., Li, M., Zhou, X. The observation during small incision lenticule extraction for myopia with corneal opacity. BMC Ophthalmology. 2017;17(1):80. DOI: 10.1186/s12886-017-0474-7

13. Мушкова И.А., Кишкин Ю.И., Захарова И.А., Майчук Н.В., Каримова А.Н., Семенов А.Д. Фармакологическое сопровождение стандартной кераторефракционной операции. Современные технологии в офтальмологии. 2014;3;191–195. [Mushkova I.A., Kishkin Y.I., Zakharova I.A., Maychuk N.V., Karimova A.N., Semyonov A.D. Pharmacological support of standard keratorefractive surgery. Sovremennye tekhnologii v oftal’mologii. 2014;3;191–195 (In Russ.)].

14. Tomita M., Chiba A., Matsuda J., Nawa Y. Evaluation of LASIK treatment with the Femto LDV in patients with corneal opacity. J Refract Surg. 2012;28:25–30. DOI: 10.3928/1081597X-20111213-01

15. Seider M.I., Ide T., Kymionis G.D., Culbertson W.W., O’Brien T.P., Yoo S.H. Epithelial breakthrough during IntraLase flap creation for laser in situ keratomileusis. J Cataract Refract Surg. 2008;34:859–863. DOI: 10.1016/j.jcrs.2007.12.043

16. Von Jagow B., Kohnen T. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. J Cataract Refract Surg. 2009;35:35–41. DOI: 10.1016/j.jcrs.2008.09.013

17. Choi S.K., Kim J.H., Lee D. Treatment of corneal opacity by planned lamellar keratectomy using the Femtosecond laser. Cornea. 2011;30:907–909. DOI: 10.1097/ICO.0b013e3182000983


Review

For citations:


Maychuk N.V., Mushkova I.A., Mayorova A.M., Shpak A.A. Case Report of Myopia Correction by ReLEx SMILE in a Patient with Superficial Corneal Opacity. Ophthalmology in Russia. 2020;17(2):295-299. (In Russ.) https://doi.org/10.18008/1816-5095-2020-2-295-299

Views: 1610


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)