Preview

Офтальмология

Расширенный поиск

Сиртуины и их роль в старении органа зрения. Обзор литературы

https://doi.org/10.18008/1816-5095-2020-3-330-335

Полный текст:

Аннотация

Нарушение зрения у пожилых людей — это серьезная проблема, которая существенно влияет на качество жизни миллионов людей во всем мире. Масштабы этой проблемы становятся все более очевидными по мере старения населения и увеличения числа пожилых людей. Возрастная дегенерация желтого пятна (ВМД) является третьей по значимости причиной слепоты во всем мире и основной причиной потери зрения у лиц старше 60 лет. Ожидается, что к 2040 году ВМД затронет около 288 миллионов человек. ВМД является многофакторным заболеванием, имеющим прогрессирующий характер течения. Возникающие дистрофические изменения сетчатки не может обратить вспять ни один из ныне существующих методов лечения. Много исследований и усилий уже было приложено для выявления различных биомаркеров прогнозирования заболеваемости, лиц, подверженных риску, патогенетических механизмов данного заболевания, а также для поиска действенных способов лечения и профилактики. Основой патогенетических изменений, которые возникают при ВМД, является старение. Биомаркеры старения — это измеряемые показатели жизнедеятельности, которые качественно и количественно изменяются в зависимости от возраста организма. Метилирование ДНК — молекулярный механизм, являющийся потенциальным биомаркером старения. Сиртуины опосредованно участвуют в данном процессе, регулируя активность фермента DNMT1. В статье рассматриваются современные знания о механизмах, лежащих в основе действия сиртуинов (Sirtuins/SIRT), с акцентом на SIRT1. Анализ влияния на звенья патофизиологической цепочки действия сиртуинов может сказаться на предотвращении и лечении патологических изменений глаза, связанных с ВМД. В статье приведены источники литературы, содержащие результаты исследований по влиянию SIRT1 как маркера старения тканей организма. Учитывая эти данные, можно сказать, что SIRT1 служит привлекательным кандидатом для разработки терапевтических стратегий по предотвращению раннего старения тканей глаза, в частности такого возраст-ассоциированного заболевания, как возрастная макулярная дегенерация. Воздействие на генетические механизмы возникновения данного заболевания является перспективным направлением в его лечении.

Об авторах

Л. К. Мошетова
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации
Россия

доктор медицинских наук, профессор, академик РАН, заведующий кафедрой офтальмологии,

ул. Баррикадная, 2/1, Москва, 125993



О. И. Абрамова
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации
Россия

аспирант кафедры офтальмологии,

ул. Баррикадная, 2/1, Москва, 125993



К. И. Туркина
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации
Россия

кандидат медицинских наук, доцент кафедры офтальмологии,

ул. Баррикадная, 2/1, Москва, 125993



М. К. Нурбеков
ФГБОУ «Научно-исследовательский институт общей патологии и патофизиологии»
Россия

кандидат биологических наук, ведущий научный сотрудник,

ул. Балтийская, 8, Москва, 125315



О. П. Дмитренко
ФГБОУ «Научно-исследовательский институт общей патологии и патофизиологии»
Россия

младший научный сотрудник,

ул. Балтийская, 8, Москва, 125315



И. Н. Сабурина
Научно-исследовательский институт молекулярной и персонализированной медицины ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации; ФГБОУ «Научно-исследовательский институт общей патологии и патофизиологии»
Россия

доктор биологических наук, профессор,

2-й Боткинский проезд, 7, корп. 2, Москва, 125284;

ул. Балтийская, 8, Москва, 125315



С. А. Кочергин
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации
Россия

доктор медицинских наук, профессор кафедры офтальмологии,

ул. Баррикадная, 2/1, Москва, 125993



Список литературы

1. Al-Zamil W.M., Yassin S.A. Recent developments in age-related macular degeneration: a review. Clin Interv Aging. 2017;12:1313–1330. DOI: 10.2147/CIA.S143508

2. De Jong P.T.V.M. Elusive drusen and changing terminology of amd. Eye. 2018;32:904–914. DOI: 10.1038/eye.2017.298

3. Peng L., Yuan Z., Ling H., Fukasawa K., Robertson K., Olashaw N., Koomen J., Chen J., Lane W.S., Seto E. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol. Cell. Biol. 2011;31:4720–4734. DOI: 10.1128/MCB.06147-11

4. Kang H., Oka S., Lee D.Y., Park J., Aponte A.M., Jung Y.S., Bitterman J., Zhai P., He Y., Kooshapur H Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins. Nat. Commun. 2017;8:15560. DOI: 10.1038/ncomms15560

5. Morigi M., Perico L., Benigni A. Sirtuins in Renal Health and Disease. J Am Soc Nephrol. 2018;29(7):1799–1809. DOI: 10.1681/ASN.2017111218

6. Grabowska W., Sikora E., Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18(4):447–476. DOI: 10.1007/s10522-017-9685-9

7. Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273(2):793–798. DOI: 10.1006/bbrc.2000.3000

8. Houtkooper R.H., Pirinen E., Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–238. DOI: 10.1038/nrm3293

9. Huang J.Y., Hirschey M.D., Shimazu T., Ho L., Verdin E. Mitochondrial sirtuins. Biochim Biophys Acta. 2010;1804(8):1645–1651B. DOI: 10.1016/j.bbapap.2009.12.021

10. Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–2580. DOI: 10.1101/gad.13.19.2570

11. Kanfi Y., Naiman S., Amir G. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218–221. DOI: 10.1038/nature10815

12. O’Callaghan C., Vassilopoulos A. Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell. 2017;16(6):1208–1218. DOI: 10.1111/acel.12685

13. Lee S.H., Lee J.H., Lee H.Y., Min K.J. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019;52(1):24–34. DOI: 10.5483/BMBRep.2019.52.1.290

14. Ford E., Voit R., Liszt G., Magin C., Grummt I., Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20(9):1075–1080. DOI: 10.1101/gad.1399706

15. Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., Tainsky M.A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003;23(9):3173–3185. DOI: 10.1128/mcb.23.9.3173-3185.2003

16. Scher M.B., Vaquero A., Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 2007;21(8):920–928. DOI: 10.1101/gad.1527307

17. Ban N., Ozawa Y., Inaba T. Light-dark condition regulates sirtuin mRNA levels in the retina. Experimental Gerontology. 2013;48(11):1212–1217. DOI: 10.1016/j.exger.2013.04.010

18. Balaiya S., Abu-Amero K.K., Kondkar A.A., Chalam K.V. Sirtuins Expression and Their Role in Retinal Diseases. Oxid Med Cell Longev. 2017;2017:3187594. DOI: 10.1155/2017/3187594

19. Lee Michan S., Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13. DOI: 10.1042/BJ20070140

20. Xu Z., Zhang L., Fei X., Yi X., Li W., Wang Q. The miR-29b-Sirt1 axis regulates selfrenewal of mouse embryonic stem cells in response to reactive oxygen species. Cell Signal. 2014;26:1500–1505. DOI: 10.1016/j.cellsig.2014.03.010

21. Han M.K., Song E.K., Guo Y., Ou X., Mantel C., Broxmeyer H.E. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell. 2008;2(3):241–251. DOI: 10.1016/j.stem.2008.01.002

22. Calvanese V., Lara E., Suárez-Alvarez B. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci USA. 2010;107(31):13736– 13741. DOI: 10.1073/pnas.1001399107

23. Toh T.B., Lim J.J., Chow E.K. Epigenetics in cancer stem cells. Mol Cancer. 2017;16(1):29. DOI: 10.1186/s12943-017-0596-9

24. Fulco M., Schiltz R.L., Iezzi S. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12(1):51–62. DOI: 10.1016/s10972765(03)00226-0

25. Prozorovski T., Schulze-Topphoff U., Glumm R.. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol. 2008;10(4):385–394. DOI: 10.1038/ncb1700

26. Быков А.Т., Дюжиков А.А., Маляренко Т.Н. Современные представления о роли диеты и мышечных нагрузок в торможении старения и развития возрастно-зависимых кардиоваскулярных заболеваний. Медицинский журнал. 2015;3:7–12.

27. Hu B., Guo Y., Chen C.. Repression of SIRT1 promotes the differentiation of mouse induced pluripotent stem cells into neural stem cells. Cell Mol Neurobiol. 2014;34(6):905–912. DOI: 10.1007/s10571-014-0071-8

28. Zeng Y., Yang K. Sirtuin 1 participates in the process of age-related retinal degeneration. Biochem Biophys Res Commun. 2015;468(1–2):167–172. DOI: 10.1016/j.bbrc.2015.10.139

29. Maugeri A., Mazzone M.G., Giuliano F., Vinciguerra M., Basile G., Barchitta M., Agodi A. Curcumin modulates DNA methyltransferases functions in a cellular model of diabetic retinopathy. Oxid. Med. Cell. Longev. 2018;2018:5407482. DOI: 10.1155/2018/5407482

30. Maugeri A., Barchitta M., Mazzone M.G., Giuliano F., Basile G., Agodi A. Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation. Int. J. Mol. Sci. 2018;19:2118 DOI: 10.3390/ijms19072118

31. Maugeri A., Barchitta M., Fallico M., Castellino N., Reibaldi M., Agodi A. Characterization of SIRT1/DNMTs Functions and LINE-1 Methylation in Patients with Age-Related Macular Degeneration. J Clin Med. 2019;8(2):159. DOI: 10.3390/jcm8020159

32. Maloney S.C., Antecka E., Granner T., Fernandes B., Lim L.A., Orellana M.E., Burnier M.N. Jr. Expression of SIRT1 in choroidal neovascular membranes. Retina. 2013. 33:862–866. DOI: 10.1097/IAE.0b013e31826af556

33. Cabral T., Mello LGM., Lima L.H. Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous. 2017;3:31. DOI: 10.1186/s40942-017-0084-9

34. Golestaneh N., Chu Y., Cheng S.K., Cao H., Poliakov E., Berinstein D.M. Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med. 2016;14(1):344. DOI: 10.1186/s12967-016-1101-8

35. Chen Z., Zhai Y., Zhang W., Teng Y., Yao K. Single Nucleotide Polymorphisms of the Sirtuin 1 (SIRT1) Gene are Associated with age-Related Macular Degeneration in Chinese Han Individuals: A Case-Control Pilot Study. Medicine (Baltimore). 2015;94(49):e2238. DOI: 10.1097/MD.0000000000002238

36. Kubota S., Kurihara T., Ebinuma M. Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation. Am J Pathol. 2010;177(4):1725–1731. DOI: 10.2353/ajpath.2010.100098

37. Zhang H., He S., Spee C., Ishikawa K., Hinton D.R. SIRT1 mediated inhibition of VEGF/VEGFR2 signaling by Resveratrol and its relevance to choroidal neovascularization. Cytokine. 2015;76(2):549–552. DOI: 10.1016/j.cyto.2015.06.019

38. Kang J.H., Choung S.Y. Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Arch Pharm Res. 2016;39(12):1703–1715. DOI: 10.1007/s12272-016-0839-0

39. Richer S., Patel S., Sockanathan S., Ulanski L.J., Miller L., Podella C. Resveratrol based oral nutritional supplement produces long-term beneficial effects on structure and visual function in human patients. Nutrients. 2014;6(10):4404–4420. DOI: 10.3390/nu6104404

40. Zhou M., Luo J., Zhang H. Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). Int J Mol Med. 2018;42(1):13–20. DOI: 10.3892/ijmm.2018.3623

41. Kondo A., Goto M., Mimura T., Matsubara M. Silent information regulator T1 in aqueous humor of patients with cataract. Clin Ophthalmol. 2016;10:307–312. DOI: 10.2147/OPTH.S100213

42. Zhang Y., Li H., Cao Y., Zhang M., Wei S. Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Mol Med Rep. 2015;12(5):6962–6968. DOI: 10.3892/mmr.2015.4286

43. Liu S., Lin Y.U., Liu X. Protective effects of SIRT1 in patients with proliferative diabetic retinopathy via the inhibition of IL-17 expression. Exp Ther Med. 2016;11(1):257–262. DOI: 10.3892/etm.2015.2877

44. Zuo L., Khan R.S., Lee V., Dine K., Wu W., Shindler K.S. SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. Invest Ophthalmol Vis Sci. 2013;54(7):5097–5102. DOI: 10.1167/iovs.13-12157

45. Isas J.M., Luibl V., Johnson L.V. Soluble and mature amyloid fibrils in drusen deposits. Invest Ophthalmol Vis Sci. 2010;51(3):1304–1310. DOI: 10.1167/iovs.09-4207

46. Cao L., Liu C., Wang F., Wang H. SIRT1 negatively regulates amyloid-beta-induced inflammation via the NF-κB pathway. Braz J Med Biol Res. 2013;46(8):659–669. DOI: 10.1590/1414-431X20132903

47. Li F., Gong Q., Dong H., Shi J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des. 2012;18:27–33. DOI: 10.2174/138161212798919075


Для цитирования:


Мошетова Л.К., Абрамова О.И., Туркина К.И., Нурбеков М.К., Дмитренко О.П., Сабурина И.Н., Кочергин С.А. Сиртуины и их роль в старении органа зрения. Обзор литературы. Офтальмология. 2020;17(3):330-335. https://doi.org/10.18008/1816-5095-2020-3-330-335

For citation:


Moshetova L.K., Abramova O.I., Turkina K.I., Nurbekov M.K., Dmitrenko O.P., Saburina I.N., Kochergin S.A. Sirtuins and Their Role in the Aging Eye (Review). Ophthalmology in Russia. 2020;17(3):330-335. (In Russ.) https://doi.org/10.18008/1816-5095-2020-3-330-335

Просмотров: 89


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)