Preview

Ophthalmology in Russia

Advanced search

Sirtuins and Their Role in the Aging Eye (Review)

https://doi.org/10.18008/1816-5095-2020-3-330-335

Abstract

Visual impairment in elderly people is a serious problem that significantly affects the quality of life of millions people around the world. The magnitude of this problem is becoming increasingly apparent as the population ages and the number of older people increases. Age-related macular degeneration (AMD) is the third leading cause of blindness worldwide and the main cause of vision loss in people over 60 years. It is expected that AMD will affect about 288 million people by 2040. AMD is a multifactorial disease with a progressive course. The arised dystrophic changes in the retina cannot be reversed by any of the known treatment methods. A lot of research and effort has already been invested in identifying various biomarkers for predicting the incidence rate, identifying people at risk, finding out the pathogenetic mechanisms of this disease, and finding effective methods of treatment and prevention.

Aging is the basis of pathological changes that occur during AMD. Aging biomarkers are measurable vital signs that qualitatively and quantitatively change with the age of the body. DNA methylation is a molecular mechanism that is a potential biomarker of aging. Sirtuins indirectly participate in this process, regulating the activity of the DNMT1 enzyme. The article discusses current knowledge of the mechanisms underlying the action of sirtuins (Sirtuins / SIRT), with an emphasis on SIRT1. Analysis of the pathophysiological action of sirtuins can affect the prevention and treatment of pathological eye changes associated with AMD. The article provides literature sources containing the results of studies of the effect of SIRT1 as a marker of aging in body tissues. SIRT1 is an attractive candidate for developing therapeutic strategies preventing early eye aging, in particular, age-associated diseases such as AMD The impact on the genetic mechanisms of this disease is a promising direction in treatment.

About the Authors

L. K. Moshetova
Russian Medical Academy of Continuous Professional Education
Russian Federation

MD, Professor, Academician of the Russian Academy of Sciences, Head of Department of Eye Diseases,

Barrikadnaja str., 2/1, Moscow 123995



O. I. Abramova
Russian Medical Academy of Continuous Professional Education
Russian Federation

postgraduate of Department of Eye Diseases,

Barrikadnaja str., 2/1, Moscow 123995



K. I. Turkina
Russian Medical Academy of Continuous Professional Education
Russian Federation

PhD, Assistant Professor of Department of Eye Diseases,

Barrikadnaja str., 2/1, Moscow 123995



M. K. Nurbekov
The Institute of General Pathology and Pathophysiology
Russian Federation

Candidate of Biological Sciences, Senior Research Officer,

Baltiyskaya str., 8, Moscow, 125315



O. P. Dmitrenko
The Institute of General Pathology and Pathophysiology
Russian Federation

Research Assistant,

Baltiyskaya str., 8, Moscow, 125315



I. N. Saburina
ar and Personalized Medicine of Russian Medical Academy of Continuous Professional Education; The Institute of General Pathology and Pathophysiology
Russian Federation

Dr. of Biological Sciences, Professor,

2nd Botkinsky passage, 7/2, Moscow 125284;

Baltiyskaya str., 8, Moscow, 125315



S. A. Kochergin
Russian Medical Academy of Continuous Professional Education
Russian Federation

MD, Professor of Department of Eye Diseases,

Barrikadnaja str., 2/1, Moscow 123995



References

1. Al-Zamil W.M., Yassin S.A. Recent developments in age-related macular degeneration: a review. Clin Interv Aging. 2017;12:1313–1330. DOI: 10.2147/CIA.S143508

2. De Jong P.T.V.M. Elusive drusen and changing terminology of amd. Eye. 2018;32:904–914. DOI: 10.1038/eye.2017.298

3. Peng L., Yuan Z., Ling H., Fukasawa K., Robertson K., Olashaw N., Koomen J., Chen J., Lane W.S., Seto E. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol. Cell. Biol. 2011;31:4720–4734. DOI: 10.1128/MCB.06147-11

4. Kang H., Oka S., Lee D.Y., Park J., Aponte A.M., Jung Y.S., Bitterman J., Zhai P., He Y., Kooshapur H Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins. Nat. Commun. 2017;8:15560. DOI: 10.1038/ncomms15560

5. Morigi M., Perico L., Benigni A. Sirtuins in Renal Health and Disease. J Am Soc Nephrol. 2018;29(7):1799–1809. DOI: 10.1681/ASN.2017111218

6. Grabowska W., Sikora E., Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18(4):447–476. DOI: 10.1007/s10522-017-9685-9

7. Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273(2):793–798. DOI: 10.1006/bbrc.2000.3000

8. Houtkooper R.H., Pirinen E., Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–238. DOI: 10.1038/nrm3293

9. Huang J.Y., Hirschey M.D., Shimazu T., Ho L., Verdin E. Mitochondrial sirtuins. Biochim Biophys Acta. 2010;1804(8):1645–1651B. DOI: 10.1016/j.bbapap.2009.12.021

10. Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–2580. DOI: 10.1101/gad.13.19.2570

11. Kanfi Y., Naiman S., Amir G. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218–221. DOI: 10.1038/nature10815

12. O’Callaghan C., Vassilopoulos A. Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell. 2017;16(6):1208–1218. DOI: 10.1111/acel.12685

13. Lee S.H., Lee J.H., Lee H.Y., Min K.J. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019;52(1):24–34. DOI: 10.5483/BMBRep.2019.52.1.290

14. Ford E., Voit R., Liszt G., Magin C., Grummt I., Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20(9):1075–1080. DOI: 10.1101/gad.1399706

15. Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., Tainsky M.A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003;23(9):3173–3185. DOI: 10.1128/mcb.23.9.3173-3185.2003

16. Scher M.B., Vaquero A., Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 2007;21(8):920–928. DOI: 10.1101/gad.1527307

17. Ban N., Ozawa Y., Inaba T. Light-dark condition regulates sirtuin mRNA levels in the retina. Experimental Gerontology. 2013;48(11):1212–1217. DOI: 10.1016/j.exger.2013.04.010

18. Balaiya S., Abu-Amero K.K., Kondkar A.A., Chalam K.V. Sirtuins Expression and Their Role in Retinal Diseases. Oxid Med Cell Longev. 2017;2017:3187594. DOI: 10.1155/2017/3187594

19. Lee Michan S., Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13. DOI: 10.1042/BJ20070140

20. Xu Z., Zhang L., Fei X., Yi X., Li W., Wang Q. The miR-29b-Sirt1 axis regulates selfrenewal of mouse embryonic stem cells in response to reactive oxygen species. Cell Signal. 2014;26:1500–1505. DOI: 10.1016/j.cellsig.2014.03.010

21. Han M.K., Song E.K., Guo Y., Ou X., Mantel C., Broxmeyer H.E. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell. 2008;2(3):241–251. DOI: 10.1016/j.stem.2008.01.002

22. Calvanese V., Lara E., Suárez-Alvarez B. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci USA. 2010;107(31):13736– 13741. DOI: 10.1073/pnas.1001399107

23. Toh T.B., Lim J.J., Chow E.K. Epigenetics in cancer stem cells. Mol Cancer. 2017;16(1):29. DOI: 10.1186/s12943-017-0596-9

24. Fulco M., Schiltz R.L., Iezzi S. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12(1):51–62. DOI: 10.1016/s10972765(03)00226-0

25. Prozorovski T., Schulze-Topphoff U., Glumm R.. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol. 2008;10(4):385–394. DOI: 10.1038/ncb1700

26. Bykov A.T., Dyuzhikov A.A., Malyarenko T.N. Current views on age-related and dependent cardiovascular diseases. Medical Journal = Medicinskij zhurnal. 2015;3:7–12 (In Russ.).

27. Hu B., Guo Y., Chen C.. Repression of SIRT1 promotes the differentiation of mouse induced pluripotent stem cells into neural stem cells. Cell Mol Neurobiol. 2014;34(6):905–912. DOI: 10.1007/s10571-014-0071-8

28. Zeng Y., Yang K. Sirtuin 1 participates in the process of age-related retinal degeneration. Biochem Biophys Res Commun. 2015;468(1–2):167–172. DOI: 10.1016/j.bbrc.2015.10.139

29. Maugeri A., Mazzone M.G., Giuliano F., Vinciguerra M., Basile G., Barchitta M., Agodi A. Curcumin modulates DNA methyltransferases functions in a cellular model of diabetic retinopathy. Oxid. Med. Cell. Longev. 2018;2018:5407482. DOI: 10.1155/2018/5407482

30. Maugeri A., Barchitta M., Mazzone M.G., Giuliano F., Basile G., Agodi A. Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation. Int. J. Mol. Sci. 2018;19:2118 DOI: 10.3390/ijms19072118

31. Maugeri A., Barchitta M., Fallico M., Castellino N., Reibaldi M., Agodi A. Characterization of SIRT1/DNMTs Functions and LINE-1 Methylation in Patients with Age-Related Macular Degeneration. J Clin Med. 2019;8(2):159. DOI: 10.3390/jcm8020159

32. Maloney S.C., Antecka E., Granner T., Fernandes B., Lim L.A., Orellana M.E., Burnier M.N. Jr. Expression of SIRT1 in choroidal neovascular membranes. Retina. 2013. 33:862–866. DOI: 10.1097/IAE.0b013e31826af556

33. Cabral T., Mello LGM., Lima L.H. Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous. 2017;3:31. DOI: 10.1186/s40942-017-0084-9

34. Golestaneh N., Chu Y., Cheng S.K., Cao H., Poliakov E., Berinstein D.M. Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med. 2016;14(1):344. DOI: 10.1186/s12967-016-1101-8

35. Chen Z., Zhai Y., Zhang W., Teng Y., Yao K. Single Nucleotide Polymorphisms of the Sirtuin 1 (SIRT1) Gene are Associated with age-Related Macular Degeneration in Chinese Han Individuals: A Case-Control Pilot Study. Medicine (Baltimore). 2015;94(49):e2238. DOI: 10.1097/MD.0000000000002238

36. Kubota S., Kurihara T., Ebinuma M. Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation. Am J Pathol. 2010;177(4):1725–1731. DOI: 10.2353/ajpath.2010.100098

37. Zhang H., He S., Spee C., Ishikawa K., Hinton D.R. SIRT1 mediated inhibition of VEGF/VEGFR2 signaling by Resveratrol and its relevance to choroidal neovascularization. Cytokine. 2015;76(2):549–552. DOI: 10.1016/j.cyto.2015.06.019

38. Kang J.H., Choung S.Y. Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Arch Pharm Res. 2016;39(12):1703–1715. DOI: 10.1007/s12272-016-0839-0

39. Richer S., Patel S., Sockanathan S., Ulanski L.J., Miller L., Podella C. Resveratrol based oral nutritional supplement produces long-term beneficial effects on structure and visual function in human patients. Nutrients. 2014;6(10):4404–4420. DOI: 10.3390/nu6104404

40. Zhou M., Luo J., Zhang H. Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). Int J Mol Med. 2018;42(1):13–20. DOI: 10.3892/ijmm.2018.3623

41. Kondo A., Goto M., Mimura T., Matsubara M. Silent information regulator T1 in aqueous humor of patients with cataract. Clin Ophthalmol. 2016;10:307–312. DOI: 10.2147/OPTH.S100213

42. Zhang Y., Li H., Cao Y., Zhang M., Wei S. Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Mol Med Rep. 2015;12(5):6962–6968. DOI: 10.3892/mmr.2015.4286

43. Liu S., Lin Y.U., Liu X. Protective effects of SIRT1 in patients with proliferative diabetic retinopathy via the inhibition of IL-17 expression. Exp Ther Med. 2016;11(1):257–262. DOI: 10.3892/etm.2015.2877

44. Zuo L., Khan R.S., Lee V., Dine K., Wu W., Shindler K.S. SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. Invest Ophthalmol Vis Sci. 2013;54(7):5097–5102. DOI: 10.1167/iovs.13-12157

45. Isas J.M., Luibl V., Johnson L.V. Soluble and mature amyloid fibrils in drusen deposits. Invest Ophthalmol Vis Sci. 2010;51(3):1304–1310. DOI: 10.1167/iovs.09-4207

46. Cao L., Liu C., Wang F., Wang H. SIRT1 negatively regulates amyloid-beta-induced inflammation via the NF-κB pathway. Braz J Med Biol Res. 2013;46(8):659–669. DOI: 10.1590/1414-431X20132903

47. Li F., Gong Q., Dong H., Shi J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des. 2012;18:27–33. DOI: 10.2174/138161212798919075


Review

For citations:


Moshetova L.K., Abramova O.I., Turkina K.I., Nurbekov M.K., Dmitrenko O.P., Saburina I.N., Kochergin S.A. Sirtuins and Their Role in the Aging Eye (Review). Ophthalmology in Russia. 2020;17(3):330-335. (In Russ.) https://doi.org/10.18008/1816-5095-2020-3-330-335

Views: 1524


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)