Preview

Ophthalmology in Russia

Advanced search

Structural and Functional Disorders in Glaucoma: the Prospects for Preclinical Diagnosis. Part 1. Is the Search for what Comes First Relevant?

https://doi.org/10.18008/1816-5095-2020-3-336-343

Abstract

The review analyzes the capabilities of modern technologies of structural neuroimaging of the retina, standard perimetry, and studies of ocular blood flow in the early diagnosis and management of glaucoma. The relevance of the search for those structural and functional changes that are primary in the development of glaucomatous optical neuropathy (GON) and the diagnostic method that has the greatest clinical significance is discussed. Progress in understanding the pathogenesis of glaucoma and the expansion of scientific understanding of key risk factors for the development and progression of the disease, including genetic factors, can be crucially important to substantiate new strategies for preclinical diagnosis and the development of radically new approaches to personalized and preventive glaucoma therapy. However, the search for what arises most early with in primary open-angle glaucoma — changes in structure or function — will not have clinical relevance unless you take into account the capabilities of specific methods of structural and functional neuroimaging that represent information at various levels of organization of the visual system. The search for a single primary factor in the pathogenesis of GON can lead to an erroneous exaggeration of the close relationship between the variables being studied, which in reality either does not exist as a causal relationship or is significantly less than what is supposed — the phenomenon called “illusory correlation”. The reliable diagnosis of early changes that occur before the clinical manifestation of glaucoma is most likely to be based on a combination of structural, functional, and hemodynamic indicators, aimed not only to increase the sensitivity of diagnosis in detecting the earliest events in the development of GON, but rather to dramatically improve the understanding and quality of interpretation of those markers that we own.

About the Authors

V. V. Neroev
Helmholtz National Medical Center of Eye Diseases
Russian Federation

MD, Professor, Corresponding Member of the Russian Academy of Sciences, Director of the Institute, Head of the Department of Pathology of the Retina and Optic Nerve,

Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062



M. V. Zueva
Helmholtz National Medical Center of Eye Diseases
Russian Federation

Dr. of Biological Sciences, Professor, Head of the Department of Clinical Physiology of Vision named after S.V. Kravkov,

Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062



A. N. Zhuravleva
Helmholtz National Medical Center of Eye Diseases
Russian Federation

PhD, Researcher of the Department of Glaucoma,

Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062



I. V. Tsapenko
Helmholtz National Medical Center of Eye Diseases
Russian Federation

Candidate of Biological Sciences, Senior Researcher of the Department of Clinical Physiology of Vision named after S.V. Kravkov,

Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062



References

1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Brit. J. Ophthalmol. 2006; 90:262–267. DOI: 10.1136/bjo.2005.081224

2. Pascolini D., Mariotti S.P. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012; 96:614–618. DOI: 10.1136/bjophthalmol-2011-300539

3. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–2090. DOI: 10.1016/j.ophtha.2014.05.013

4. Varma R., Lee P.P., Goldberg I., Kotak S. An assessment of the health and economic burdens of glaucoma. Am J Ophthalmol. 2011;152:515–522. DOI: 10.1016/j.ajo.2011.06.004

5. Neroev V.V., Kiseleva O.A., Bessmertnyj A.M. The main results of a multicenter study of the epidemiological features of primary open-angle glaucoma in the Russian Federation. Russian ophthalmological journal = Rossiyskiy oftal’mologicheskiy zhurnal. 2013;6(3):4–7 (In Russ.).

6. Susanna R. Jr., De Moraes C.G., Cioffi G.A., Ritch R. Why Do People (Still) Go Blind from Glaucoma? Transl Vis Sci Technol. 2015;4(2):1.

7. Astakhov Yu.S., Rakhmanov V.V. Heredity and glaucoma. Ophthalmology journal = Oftal’mologicheskie vedomosti. 2012;4(4):51– 57 (In Russ.).

8. Fuse N. Genetic bases for glaucoma. Tohoku J. Exp. Med. 2010;221:1–10.

9. The incidence of the population of Russia in 2010. Stat. sb. Rosstat. Moscow, 2012. 170 p. Part III (In Russ.).

10. Zhuravleva A.N., Neroev V.V., Andreeva L.D. The study of fibronectin sclera in primary open-angle glaucoma (Immunohistochemical study). Annals of Ophthalmology = Vestnik oftal’mologii. 2009;125(3):12–15 (In Russ.).

11. Zhuravleva A.N., Andreeva LD, Neroev V.V. Collagen theory of aging and the genetic code in the pathogenesis of glaucoma. Clinical gerontology = Klinicheskaya gerontologiya. 2009;15(8–9):78 (In Russ.).

12. Izhevskaya V.L., Kiseleva O.A., Zhuravleva A.N., Khalilov Sh.A. Polymorphisms of collagen genes I and III types and their connection with the development of POAG. Genetics = Genetika. 2013;12(6):3–11 (In Russ.).

13. Girard M.J., Suh K.F., Bottlang М., Burgoyne C.F., Downs J.C. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP. Invest. Ophthalmol. Vis. Sci. 2011;52:5656–5669. DOI: 10.1167/iovs.10-6927

14. Chong G.T., Lee R.K. Glaucoma versus red disease: imaging and glaucoma diagnosis. Curr Opin Ophthalmol. 2012;23:79–88. DOI: 10.1097/ICU.0b013e32834ff431

15. Xu X., Xiao H., Guo X., Chen X., Hao L., Luo J., Liu X. Diagnostic ability of macular ganglion cell inner plexiform layer thickness in glaucoma suspects. Medicine. 2017;96:51(e9182). DOI: 10.1097/MD.0000000000009182

16. Medeiros F.A., Lisboa R., Weinreb R.N., Girkin C.A., Liebmann J.M., Zangwill L.M. A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol. 2012;130(9):9:1107–1116. DOI: 10.1001/archophthalmol.2012.827

17. Wu Z., Hadoux X., Hui F., Sarossy M.G., Crowston J.G. Photopic Negative Response Obtained Using a Handheld Electroretinogram Device: Determining the Optimal Measure and Repeatability. Trans Vis. Sci. Texhnol. 2016;5(4):8. eCollection 2016. DOI: 10.1167/tvst.5.4.8

18. Simakova I.L., Sukhinin M.V., Serdukova S.A. The effectiveness of various methods of computerized perimetry in primary open-angle glaucoma. Part 1. National Journal glaucoma = Natsional’nyi zhurnal glaucoma. 2016;15(1):25–36 (In Russ.).

19. Simakova I.L., Sukhinin M.V., Sobolev A.F., Serdukova S.A. The effectiveness of various methods of computerized perimetry in primary open-angle glaucoma. Part 2. National Journal glaucoma = Natsional’nyi zhurnal glaucoma. 2016;15(2):44–53 (In Russ.).

20. Zueva M.V. Dynamics of retinal ganglion cell death in glaucoma and its functional markers. National Journal glaucoma = Natsional’nyi zhurnal glaucoma. 2016;15(1):70–85 (In Russ.).

21. Harwerth R.S., Crawford M.L., Frishman L.J., Viswanathan S., Smith E.L. 3rd, Carter-Dawson L. Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res. 2002;21:91–125.

22. Wollstein G., Kagemann L, Bilonick R.A., Ishikawa H., Folio L.S., Gabriele M.L., Ungar A.K., Duker J.S., Fujimoto J.G., Schuman J.S. Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point. Br J Ophthalmol. 2012;96:47–52. DOI: 10.1136/bjo.2010.196907

23. Medeiros F.A., Zangwill L.M., Bowd C., Mansouri K., Weinreb R.N. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest. Ophthalmol. Vis. Sci. 2012;53:11:6939– 6946. DOI: 10.1167/iovs.12-10345

24. Leung C.K., Chan W.M., Yung W.H., Ng A.C., Woo J., Tsang M.K., Tse R.K. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112:391– 400. DOI: 10.1016/j.ophtha.2004.10.020

25. Medeiros F.A., Zangwill L.M., Bowd C., Vessani R.M., Susanna R. Jr., Weinreb R.N. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol. 2005;139:44–55. DOI: 10.1016/j.ajo.2004.08.069

26. Agudo-Barriuso M., Villegas-Perez M.P., de Imperial J.M., Vidal-Sanz M. Anatomical and functional damage in experimental glaucoma. Curr Opin Pharmacol. 2013;13:5–11. DOI: 10.1016/j.coph.2012.09.006. Epub 2012 Oct 4.

27. Kim J.S., Ishikawa H., Gabriele M.L., Wollstein G., Bilonick R.A., Kagemann L., Fujimoto J.G., Schuman J.S. Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT. Invest Ophthalmol Vis Sci 2010;5:896–902. DOI: 10.1167/iovs.09-4110

28. Park S.B., Sung K.R., Kang S.Y., Kim K.R., Kook M.S. Comparison of glaucoma diagnostic capabilities of cirrus HD and stratus optical coherence tomography. Arch Ophthalmol 2009;127:16031609. DOI: 10.1001/archophthalmol.2009.296

29. Leite M.T., Rao H.L., Zangwill L.M., Weinreb R.N., Medeiros F.A. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011;118:1331339. DOI: 10.1016/j.ophtha.2010.11.029

30. Kuang T.M., Zhang C., Zangwill L.M. Estimating the lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects. Ophthalmology. 2015;122(10):2002–2009.

31. Harwerth R.S., Quigley H.A. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch. Ophthalmol. 2006;124:853–859. DOI: 10.1001/archopht.124.6.853

32. Harwerth R.S., Wheat J.L., Fredette M.J., Anderson D.R. Linking structure and function in glaucoma. Prog. Retin. Eye Res. 2010; 29:249–271. DOI: 10.1016/j.preteyeres.2010.02.001

33. Swanson W.H., Felius J., Pan F. Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Invest. Ophthalmol. Vis. Sci. 2004;45:466–472. DOI: 10.1167/iovs.03-0374

34. Hood D.C., Kardon R.H. A framework for comparing structural and functional measures of glaucomatous damage. Prog. Retin. Eye Res. 2007;26:688–710. DOI: 10.1016/j.preteyeres.2007.08.001

35. Rao H.L., Zangwill L.M., Weinreb M.D., Leite M.T., Sample P.A., Medeiros F.A. Structure-function relationship in glaucoma using spectral-domain optical coherence tomography. Arch. Ophthalmol. 2011;129(7):864–871. DOI: 10.1001/archophthalmol.2011.145

36. Gupta N., Yucel Y.H. Brain changes in glaucoma. Eur. J. Ophthalmol. 2003; 13(Suppl 3):S32–S35.

37. Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog. Retin. Eye Res. 2003;22:465–481.

38. Gupta N., Ang L.C., Noel de Tilly L., Bidaisee L., Yucel Y.H. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br. J. Ophthalmol. 2006;90(6):674–678. DOI: 10.1136/bjo.2005.086769

39. Yucel Y., Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog. Brain Res. 2008;173:465–478. DOI: 10.1016/S0079-6123(08)01132-1

40. Crish S.D., Sappington R.M., Inman D.M., Horner P.J., Calkins D.J. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc. Natl. Acad. Sci. USA. 2010;107:5196–5201. DOI: 10.1073/pnas.0913141107

41. Calkins D.J., Horner P.J. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest. Ophthalmol. Vis. Sci. 2012;53:2482–2484. DOI: 10.1167/iovs.12-9483i

42. Sponsel W.E., Groth S.L., Satsangi N., Maddess T., Reilly M.A. Refined Data Analysis Provides Clinical Evidence for Central Nervous System Control of Chronic Glaucomatous Neurodegeneration. Transl. Vis. Sci. Technol. 2014;3(3):1. DOI: 10.1167/tvst.3.3.1

43. Kasi A., Faiq M.A., Vhan K.C. In vivo imaging of structural, metabolic and functional brain changes in glaucoma. Neural Regen. Res. 2019;14(3):446–449. DOI: 10.4103/1673-5374.243712

44. Fuchsjäger-Mayrl G., Wally B., Georgopoulos M., Rainer G., Kircher K., Buehl W., Amoako-Mensah T., Eichler H.G., Vass C., Schmetterer L. Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest. Ophthalmol. Vis. Sci. 2004;45(3):834–839.

45. Leske M.C., Heijl A., Hyman L., Bengtsson B., Dong L., Yang Z. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–1972. DOI: 10.1016/j.ophtha.2007.03.016

46. Garhöfer G., Fuchsjäger-Mayrl G., Vass C., Pemp B., Hommer A., Schmetterer L. Retrobulbar blood flow velocities in open angle glaucoma and their association with mean arterial blood pressure. Invest. Ophthalmol. Vis. Sci. 2010;51(12):6652– 6657. DOI: 10.1167/iovs.10-5490

47. Schmidl D., Garhofer G., Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow — relevance for glaucoma. Exp Eye Res. 2011;93(2):141–155. DOI: 10.1016/j.exer.2010.09.002. Epub 2010 Sep 22.

48. Costa V.P., Harris A., Anderson D., Stodtmeister R., Cremasco F., Kergoat H., Lovasik J., Stalmans I., Zeitz O., Lanzl I., Gugleta K., Schmetterer L. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014:92:e252–e266. DOI: 10.1111/aos.12298

49. Hayreh S.S. Blood flow in the optic head and factors that may influence it. Prog. Retin. Eye Res. 2001;20(5):595–624.

50. Jonas J., Harazny J., Budde W.M., Mardin C.Y., Papastathopoulos K.I., Michelson G. Optic disc morfometry correlated with confocal laser scanning Doppler flowmetry measurements in normal-pressure glaucoma. J. Glaucoma. 2003;12:260–265.

51. Hafez A.S., Bizzarro R.L., Lesk M.R. Evaluation of optic nerve head and peripapillary retinal blood flow in glaucoma patients, ocular hypertensives, and normal subjects. Am. J. Ophthalmol. 2003;136(6):1022–1031 DOI: 10.1016/s0002-9394(03)00632-9

52. Deokule S., Vizzeri G., Boehm A., Bowd C., Weinreb R.N. Association of visual field severity and parapapillary retinal blood flow in open-angle glaucoma. J. Glaucoma. 2010;19(5):293–298. DOI: 10.1097/ijg.0b013e3181b6e5b9

53. Plange N., Kaup M., Weber A., Arend K., Remky A. Retrobulbarhaemo-dynamics and morphometric optic disc analysis in primary open-angle glaucoma. Br J Ophthalmol. 2006;90(12):1501–1504. DOI: 10.1136/bjo.2006.099853

54. Logan J.F., Rankin S.J., Jackson A.J. Retinal blood flow measurements and neuroretinal rim damage in glaucoma. Br. J. Ophthalmol. 2004;88(8):1049–1054. DOI: 10.1136/bjo.2003.034884

55. Siesky B., Harris A., Amireskandari A., Marek B. Glaucoma and ocular blood flow: an anatomical perspective. Expert Rev Ophthalmol. 2012;7(4):325–340. DOI: 10.1586/eop.12.41

56. Van Melkebeke L., Barbosa-Breda J., Huygens M., Stalmans I. Optical Coherence Tomography Angiography in Glaucoma: A Review. Ophthalmic Res. 2018; 60:139– 151. DOI: 10.1159/000488495

57. Kromer R., Glusa P., Framme C., Pielen A., Junker B. Optical coherence tomography angiography analysis of macular flow density in glaucoma. Acta Ophthalmol. 2019; 97(2):e199-e206. doi: 10.1111/aos.13914

58. Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., Lagutin M.B. Pattern electroretinogram and macular hemoperfusion in glaucoma. Annals of Ophthalmology = Vestnik oftal'mologii. 2018;134(4):34–40. DOI: 10.17116/oftalma201813404134

59. Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M., Lombardi L.H., Gattey D.M., Armour R.L., Edmunds B., Kraus M.F., Fujimoto J.G., Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121:1322–1332. DOI: 10.1016/j.ophtha.2014.01.021

60. Luo X., Frishman L.J. Retinal pathway origins of the pattern electroretinogram (PERG). Invest. Ophthalmol. Vis. Sci. 2011;52:8571–8584.

61. Luo X., Yu-meng Shen, Meng-nan Jiang, Xiang-feng Lou, Yin Shen Y. Ocular Blood Flow Autoregulation Mechanisms and Methods. J. Ophthalmol. 2015;2015, Article ID 864871, 7 pages. DOI: 10.1155/2015/86487

62. Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin. Exp. Ophthalmol. 2012;40:364–368. DOI: 10.1111/j.14429071.2012.02789.x

63. Baltan S., Inman D.M., Danilov C.A., Morrison R.S., Calkins D.J., Horner P.J. Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration J. Neurosci. 2010;30:5644–5652. DOI: 10.1523/jneurosci.5956-09.2010

64. Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., Lagutin M.B. Conventional evoked potentials and their relationship with the peripapillary and retrobulbar blood flow in glaucoma. Annals of Ophthalmology = Vestnik oftal’mologii. 2018;134(3):19–27 (In Russ.). DOI: 10.17116/oftalma2018134319

65. Kurysheva N.I., Kiseleva T.N., Khodak N.A., Irtegova E.Yu. Study of interrelation between electroretinography and regional hemodynamics of the eye in glaucoma. National Journal glaucoma = Natsional’nyi zhurnal glaukoma. 2013;2:5–9 (In Russ.).

66. Arden G.B., Greaves D.P. The reversible alterations of the electroretinogram of the rabbit after occlusion of the retinal circulation. J. Physiol. 1956;133:266–274.

67. Fujino T., Hamasaki D.I. The effect of occluding the retinal and choroidal circulation on the electroretinogram of monkeys. J. Physiol. 1965;180:837–845.

68. He Z., Vingrys A.J., Armitage J.A., Bui B.V. The role of blood pressure in glaucoma. Clin Exp Optom. 2011 Mar;94(2):133–149. DOI: 10.1111/j.1444-0938.2010.00564.x

69. Bui B.V., He Z., Vingrys A.J., Nguyen C.T.O., Wong V.H.Y., Fortune B. Using the electroretinogram to understand how intraocular pressure elevation affects the rat retina. J. Ophthalmol. 2013;2013. https://doi.org/10.1155/2013/262467

70. Abbott C.J., Choe T.E., Burgoyne C.F., Cull G., Wang L., Fortune B. Comparison of retinal nerve fiber layer thickness in vivo and axonal transport after chronic intraocular pressure elevation in young versus older rats. PLoS One. 2014;9:1–24. DOI: 10.1371/journal.pone.0114546

71. Gurdita A., Tan B., Joos K.M., Bizheva K., Choh V. Pigmented and albino rats differ in their responses to moderate, acute and reversible intraocular pressure elevation. Doc. Ophthalmol. Springer Berlin Heidelberg; 2017;134(3):205-219. DOI: 10.1007/s10633-017-9586-x

72. He Z., Lim J.K.H., Nguyen C.T.O., Vingrys A.J., Bui B.V. Coupling blood flow and neural function in the retina: a model for homeostatic responses to ocular perfusion pressure challenge. Physiol Rep. 2013;1:e00055. DOI: 10.1002/phy2.55

73. Wong V.H.Y., Vingrys A.J., Jobling A.I., Bui B.V. Susceptibility of StreptozotocinInduced Diabetic Rat Retinal Function and Ocular Blood Flow to Acute Intraocular Pressure Challenge. Invest. Opthalmol. Vis. Sci. 2013;54:2133. DOI: 10.1167/iovs.1311595

74. Lim J.K.H., Nguyen C.T.O., He Z., Vingrys A.J., Bui B.V. The effect of ageing on ocular blood flow, oxygen tension and retinal function during and after intraocular pressure elevation. PLoS One. 2014;9:e98393. DOI: 10.1371/journal.pone.0098393

75. Zhao D., He Z., Vingrys A.J., Bui B.V., Nguyen C.T.O. The effect of intraocular and intracranial pressure on retinal structure and function in rats. Physiol Rep. 2015;3:e12507. DOI: 10.14814/phy2.12507

76. Moayed A.A., Hariri S., Choh V., Bizheva K. In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography. Opt. Lett. 2011;36:4575. DOI: 10.1364/OL.36.004575

77. Moayed A.A., Hariri S., Hyun C., Doran B., Kraft T.W., Boyd S., Bizheva K. Combined optical coherence tomography and electroretinography system for in vivo simultaneous morphological and functional imaging of the rodent retina. J. Biomed. Opt. 2014;15:40506. DOI: 10.1117/1.3475489

78. Tan B., MacLellan B., Mason E., Bizheva K. Structural, functional and blood perfusion changes in the rat retina associated with elevated intraocular pressure, measured simultaneously with a combined OCT+ERG system. PLoS ONE. 2018;13(3):e0193592. DOI: 10.1371/journal.pone.0193592

79. Tan B., Mason E., MacLellan B., Bizheva K.K. Correlation of Visually Evoked Functional and Blood Flow Changes in the Rat Retina Measured With a Combined OCT+ ERG System. Invest. Ophthalmol. Vis. Sci. 2017;58:1673. DOI: 10.1167/iovs.17-21543

80. Nesterov A.P. Glaukoma. Moscow: Medinformatsionnoye agentstvo, 2008. 360 р. (In Russ.).

81. Attwell D., Buchan A.M., Charpak S., Lauritzen M., MacVicar B.A., Newman E.A. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–243. DOI: 10.1038/nature09613

82. Noonan J.E., Lamoureux E.L., Sarossy M. Neuronal activity-dependent regulation of retinal blood flow. Clin. Exp. Ophthalmol. 2015 Sep-Oct;43(7):673–682. DOI: 10.1111/ceo.12530

83. Song Y., Nagaoka T., Yoshioka T., Nakabayashi S., Tani T., Yoshida A. Role of glial cells in regulating retinal blood flow during flicker-induced hyperemia in cats. Invest. Ophthalmol. Vis. Sci. 2015;56:7551–7559. DOI: 10.1167/iovs.15-17676


Review

For citations:


Neroev V.V., Zueva M.V., Zhuravleva A.N., Tsapenko I.V. Structural and Functional Disorders in Glaucoma: the Prospects for Preclinical Diagnosis. Part 1. Is the Search for what Comes First Relevant? Ophthalmology in Russia. 2020;17(3):336-343. (In Russ.) https://doi.org/10.18008/1816-5095-2020-3-336-343

Views: 972


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)