Рhotopic Negative Response for Testing the Function of Inner Retina: Registration Requirements and Comparison in the Eyes with Natural Pupil Width and in Conditions of Drug Mydriasis
https://doi.org/10.18008/1816-5095-2020-3-398-406
Abstract
Purpose: To evaluate the possibility of registration of the photopic negative response (PhNR) without pupil dilatation in healthy individuals to determine the dysfunction of neurons of the inner retina.
Methods: 12 healthy persons (23 eyes) aged 24 to 40 years were examined. Refraction anomalies did not exceed 0.5 diopters. A PhNR was evaluated in photopic ERGs recorded on a blue background with red flashes of four intensities (0.375, 0.75, 1.5, 3.0 cd·s/m2) using the RETIport/scan21 (Roland Consult). First, ERG was recorded with the natural pupil (3.5 ± 0.2 mm). Then, the recording was repeated after drug mydriasis (average pupil size 8.7 ± 0.1 mm).
Results. In eyes with natural pupil width, in comparison with drug mydriasis, PhNR amplitudes in responses to weakest stimuli (0.375 cd·s/m2) were significantly reduced. The effect of pupil size on the PhNR amplitude from a baseline was virtually absent in responses to higher strength flashes. This phenomenon can be associated with an irregular distribution of light over the retina with small pupil size, the effect of which is maximal in responses to weak flashes. For the maximal brightness stimuli (3.0 cd·s/m2), differences were found between groups of non-dilated and dilated pupils in the amplitudes of the b-wave and PhNR from the b-peak, which may reflect a decrease in the number of stimulated photoreceptors during ganzfeld stimulation when the pupil is not dilated.
Conclusion. The effect of pupil size on the parameters of the PhNR was most significant in the ERG with minimal flash strength and it decreases in responses to flashes of higher brightness. If it is necessary to record the ERG without drug mydriasis, especially in screening studies, it is recommended to limit the protocol to estimate the PhNR from a baseline in responses to maximal flashes, and use the relative parameter — the amplitude ratio of PhNR/b. Keywords: photopic negative response, electroretinography, pupil width
About the Authors
V. I. KotelinRussian Federation
Postgraduate of the Glaucoma Department,
Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062
M. O. Kirillova
Russian Federation
Postgraduate of the Glaucoma Department,
Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062
M. V. Zueva
Russian Federation
Professor, Dr. Sci. (Biology), Head of the Department of S.V. Kravkova Clinical Physiology of Vision,
Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062
I. V. Tsapenko
Russian Federation
Cand. Sci. (Biology), Senior Researcher, Department of S.V. Kravkova Clinical Physiology of Vision,
Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062
A. N. Zhuravleva
Russian Federation
PhD, researcher of the Glaucoma Department,
Sadovaya-Chernogryazskaya str., 14/19, Moscow
O. A. Kiseleva
Russian Federation
MD, Head of the Glaucoma Department,
Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062
A. M. Bessmertny
Russian Federation
MD, Senior Research Officer of the Glaucoma Department,
Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062
References
1. Viswanathan S., Frishman L.J. Evidence that negative potentials in the photopic electroretinograms of cats and primates depend upon spiking activity of retinal ganglion cell axons (abstract). Soc. Neurosci. 1997;23:1024.
2. Viswanathan S., Frishman L.J., Robson J.G., Harwerth R.S., Smith E.L. 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 1999;40(6):1124–1136. PMID: 10235545
3. Frishman L., Sustar M., Kremers J., McAnany J.J., Sarossy M., Tzekov R., Viswanathan S. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol.2018;36(3):207–211. DOI: 10.1007/s10633-018-9638-x
4. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol. Rev. 1974;54(4):813–889. DOI: 10.1152/physrev.1974.54.4.813
5. Bloomfield S.A. Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. J. Neurophysiol. 1996;75(5):1878–1893. DOI: 10.1152/jn.1996.75.5.1878.
6. Gotoh Y., Machida Sh., Tazawa Y. Selective Loss of the Photopic Negative Response in Patients With Optic Nerve Atrophy. Arch. Ophthalmol. 2004;122(3):341–346. DOI: 10.1001/archopht.122.3.341
7. Rangaswamy N.V., Frishman L.J., Dorotheo E.U., Schiffman J.S., Bahrani H.M., Tang R.A. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol. Vis. Sci. 2004;45(10):3827–3837. DOI: 10.1167/iovs.04-0458
8. Li B., Barnes G.E., Holt W.F. The decline of the photopic negative response (PhNR) in the rat after optic nerve transection. Doc. Ophthalmol. 2005;111(1):23–31. DOI: 10.1007/s10633-005-2629-8
9. Medeiros F.A. Biomarkers and surrogate endpoints in glaucoma clinical trials. Br. J. Ophthalmol. 2015;99(5):599–603. DOI: 10.1136/bjophthalmol-2014-305550
10. Thompson D.A., Feather S., Stanescu H.C., Freudenthal B., Zdebik A., Warth R., Ognjanovic M., Hulton S.A., Wassmer E., Hoff W., Russell-Eggitt I., Dobbie A., Sheridan E., Kleta R., Bockenhauer D. Altered electroretinograms in patients with KCNJ10 mutations and EAST syndrome. J. Physiol. 2011;589(7):1681–1689. DOI: 10.1113/jphysiol.2010.198531
11. Raz-Prag D., Grimes W.N., Fariss R.N., Vijayasarathy C., Campos M.M., Bush R.A., Diamond J.S., Sieving P.A. Probing potassium channel function in vivo by intracellular delivery of antibodies in a rat model of retinal neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 2010;107(28):12710–12715. DOI: 10.1073/pnas.0913472107
12. McCulloch D.L., Marmor M.F., Brigell M.G., Hamilton R., Holder G.E., Tzekov R., Bach M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc. Ophthalmol. 2015;130(1):1–12.
13. Jacobi P.C., Miliczek K.D., Zrenner E. Experiences with the international standard for clinical electroretinography: normative values for clinical practice, interindividual and intraindividual variations and possible extensions. Doc. Ophthalmol. 1993;85(2):95–114. PMID: 23198055
14. Keating D., Parks S., Evans A. Technical aspects of multifocal ERG recording. Doc. Ophthalmol. 2000;100(2–3):77–98.
15. Kato K., Kondo M., Sugimoto M., Ikesugi K., Matsubara H. Effect of pupil size on flicker ERGs recorded with RETeval system: new mydriasis-free full-field ERG system. Invest. Ophthalmol. Vis. Sci. 2015;56(6):3684–3690. DOI: 10.1167/iovs.1416349
16. Viswanathan S., Frishman L.J., Robson J.G., Walters J.W. The photopic negative response of the flash electroretinogram in primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2001;42(2):514–522. PMID: 11157891
17. Colotto A., Falsini B., Salgarello T., Iarossi G., Galan M.E., Scullica L. Photopic negative response of the human ERG: losses associated with glaucomatous damage. Invest. Ophthalmol. Vis. Sci. 2000;41(8):2205–2211.
18. Machida S., Tamada K., Oikawa T., Yokoyama D., Kaneko M., Kurosaka D. Sensitivity and specificity of photopic negative response of focal electoretinogram to detect glaucomatous eyes. Br. J. Ophthalmol. 2010 Feb;94(2):202-8. DOI: 10.1136/bjo.2009.161166
19. Preiser D., Lagreze W.A., Bach M., Poloschek C.M. Photopic negative response versus pattern electroretinogram in early glaucoma. Invest. Ophthalmol. Vis. Sci. 2013;54(2):1182–1191. DOI: 10.1167/iovs.12-11201
20. Machida S., Kaneko M., Kurosaka D. Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma. Curr. Eye Res. 2014;40(4):439–449. DOI: 10.3109/02713683.2014.922196
21. Kaneko M., Machida S., Hoshi Y., Kurosaka D. Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr. Eye Res. 2015;40(1):77–86. DOI: 10.3109/02713683.2014.915575
22. Miyata K., Nakamura M., Kondo M., Lin J., Ueno S., Miyake Y., Terasaki H. Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest. Ophthalmol. Vis. Sci. Investigative ophthalmology & visual science. 2007;48(2):820–824. DOI: 10.1167/iovs.06-0845
23. Machida S., Gotoh Y., Tanaka M., Tazawa Y. Predominant loss of the photopic negative response in central retinal artery occlusion. Am. J. Ophthalmol. 2004;137(5):938–940. DOI: 10.1016/j.ajo.2003.10.023
24. Chen H., Zhang M., Huang S., Wu D. The photopic negative response of flash ERG in nonproliferative diabetic retinopathy. Doc. Ophthalmol. 2008;117(2):129–135. DOI: 10.1007/s10633-008-9114-0
25. Zueva M., Kolchin A., Kiseleva T., Lesenko M., Tsapenko I., Ryabina M. The flicker ERG and retinal blood flow relationship in diabetic patients without retinopathy. Acta Ophthal. 2012;90 (Special Issue Supplement s249):50 (2421).
26. Neroev V.V., Kolchin A.A., Kiseleva T.N., Zueva M.V., Tsapenko I.V., Ryabina M.V., Grinchenko M.I. Eye Hemodynamics and Retinal Functional Activity Alterations in Patients with Nonproliferative Diabetic Retinopathy. Russian ophthalmology journal = Rossijskij oftal’mologicheskij zhurnal. 2013;6(2):58–64 (In Russ.).
27. Niyadurupola N., Luu C.D., Nguyen D.Q., Geddes K., Tan G.X., Wong C.C., Tran T., Coote M.A., Crowston J.G. Intraocular pressure lowering is associated with an increase in the photopic negative response (PhNR) amplitude in glaucoma and ocular hypertensive eyes. Invest. Ophthalmol. Vis. Sci. 2013;54(3):1913–1919. DOI: 10.1167/iovs.12-10869
28. Machida S., Tamada K., Oikawa T., Gotoh Y., Nishimura T., Kaneko M., Kurosaka D. Comparison of photopic negative response of full-field and focal electroretinograms in detecting glaucomatous eyes. J. Ophthalmol. 2011;2011, Article ID 564131, 11 pages. DOI: 10.1155/2011/564131
29. Machida Sh. Clinical applications of the photopic negative response to optic nerve and retinal diseases. J. Ophthalmol. 2012;2012:397178. DOI: 10.1155/2012/397178
30. Neroev V.V., Zueva M.V., Zhuravleva A.N., Tsapenko I.V. Structural and functional disorders in glaucoma: the prospects for preclinical diagnosis. Part 1. How relevant is the search for what comes first? Ophthalmology in Russia. 2020;17(3):336–343 (In Russ.).
31. Luo X., Frishman L.J. Retinal pathway origins of the pattern electroretinogram (PERG). Invest. Ophthalmol. Vis. Sci. 2011;52(12):8571–8584. DOI: 10.1167/iovs.11-8376
32. Holder G.E. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog. Retin. Eye Res. 2001;20(4):531–561. DOI: 10.1016/S1350-9462(00)00030-6
33. Porciatti V., Ventura L.M. Physiological significance of steady-state PERG losses in glaucoma: clues from simulation of abnormalities in normal subjects. J. Glaucoma. 2009;18(7):535–542. DOI: 10.1097/ijg.0b013e318193c2e1
34. Zueva M.V. Dynamics of death of retinal ganglion cells in glaucoma and its functional markers. National Journal of Glaucoma = Natsional’nyi zhurnal glaukoma. 2016;(1):70–85 (In Russ.).
35. Banitt M.R., Ventura L.M., Feuer W.J., Savatovsky E., Luna G., Shif O., Bosse B., Porciatti V. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest. Ophthalmol. Vis. Sci. 2013;54(3):2346– 2352. DOI: 10.1167/iovs.12-11026
36. Bach M., Hoffmann M.B. Update on the pattern electroretinogram in glaucoma. Optom. Vis. Sci. 2008;85(6):386−395. DOI: 10.1097/opx.0b013e318177ebf3
37. Bode S.F.N., Jehle T., Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest. Ophthalmol. Vis. Sci. 2011;52(7):4300– 4306. DOI: 10.1167/iovs.10-6381
38. Lambiase A., Aloe L., Centofanti M., Parisi V., Bao S.N., Mantelli F., Colafrancesco V., Manni G.L., Bucci M.G., Bonini S., Levi-Montalcini R. Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: Implications for glaucoma. Proc. Natl. Acad. Sci. U. S. A. 2009;106(32):13469–13474. DOI: 10.1073/pnas.0906678106
39. Rangaswamy N.V., Shirato S., Kaneko M., Digby B.I., Robson J.G., Frishman L.J. Effects of spectral characteristics of ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Invest. Ophthalmol. Vis. Sci. 2007;48(10):4818–4828. DOI: 10.1167/iovs.07-0218
40. Sustar M., Cvenkel B., Brecelj J. The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open-angle glaucoma patients. Doc Ophthalmol. 2009;118:167–177. DOI: 10.1007/s10633-008-9150-9
41. Kremers J., Jertila M., Link B., Pangeni G., Horn F.K. Spectral characteristics of the PhNR in the full-field flash electroretinogram of normals and glaucoma patients. Doc. Ophthalmol. 2012; 124(2):79–90. DOI: 10.1007/s10633-011-9304-z
42. Wang J., Cheng H., Hu Y.S., Tang R.A., Frishman L.J. The photopic negative response of the flash electroretinogram in multiple sclerosis. Invest. Ophthalmol. Vis. Sci. 2012;53(3):1315–1323. DOI: 10.1167/iovs.11-8461
43. Tang J., Edwards T., Crowston J.G., Sarossy M. The test–retest reliability of the photopic negative response (PhNR). Trans. Vis. Sci. Tech. 2014;3(6):1. DOI: 10.1167/tvst.3.6.1
44. Wu Z., Hadoux X., Fan Gaskin J.C., Sarossy M.G., Crowston J.G. Measuring the photopic negative response: viability of skin electrodes and variability across disease severities in glaucoma. Trans. Vis. Sci. Tech. 2016;5(2):13. DOI: 10.1167/tvst.5.2.13
45. Poloschek C.M., Bach M. Can we do without mydriasis in multifocal ERG recordings? Doc. Ophthalmol. 2013;126(3):261–262. DOI: 10.1007/s10633-008-9146-5
46. Mohamad-Rafiuddin M.-S., Rosli S.A., Chen A.-H., Wan-Hamat W.-N. The effects of non-dilated and dilated pupil at different eccentricity on multifocal electroretinogram. (ARVO Annual Meeting Abstract , April 2014). Invest. Ophthalmol. Vis. Sci. 2014;55(13):348.
47. Nakamura N., Fujinami K., Mizuno Y., Noda T., Tsunoda K. Evaluation of cone function by a handheld non-mydriatic flicker electroretinogram device. Clin. Ophthalmol. 2016;10:1175–1185. DOI: 10.2147/OPTH.S104721
48. Hoffmann M.L., Zrenner E., Langhof H.J. The effect of the pupil as aperture and field stop on the various components of the human electroretinogram (author’s transl). Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 1978;206(4):237–245. DOI: 10.1007/BF02387335
49. Papathanasiou E.S., Papacostas S.S. Flash electroretinography: normative values with surface skin electrodes and no pupil dilation using a standard stimulation protocol. Doc. Ophthalmol. 2008;116(1):61–73. DOI: 10.1007/s10633-007-9065-x
50. Chiappa K.H. Evoked potentials in clinical medicine. Lippincott Williams & Wilkins; 1997, 720 p.
51. Davis C.Q., Kraszewska J., Manning C. Constant luminance (cd s/m2) versus constant retinal illuminance stimulation in flicker ERGs. Doc Ophthalmol. 2017;134:75–87. DOI: 10.1007/s10633-017-9572-3
Review
For citations:
Kotelin V.I., Kirillova M.O., Zueva M.V., Tsapenko I.V., Zhuravleva A.N., Kiseleva O.A., Bessmertny A.M. Рhotopic Negative Response for Testing the Function of Inner Retina: Registration Requirements and Comparison in the Eyes with Natural Pupil Width and in Conditions of Drug Mydriasis. Ophthalmology in Russia. 2020;17(3):398-406. (In Russ.) https://doi.org/10.18008/1816-5095-2020-3-398-406