Multifocal Electroretinography as a Method of Functional Assessment of Retinal Laser Injury in Experimental Studies
https://doi.org/10.18008/1816-5095-2021-1-110-116
Abstract
Purpose: to investigate local functional changes in the rabbit retina by multifocal electroretinography under pulsed laser radiation.
Materials and methods. Transpupillary applications by single laser pulses (Nd:YAG laser, 532 nm, 50 ms) with the diameter of the laser beam spot on the retina surface of 132 µm (15 eyes) and 200 µm (15 eyes) were performed on 30 eyes of 15 rabbits. In each eye were applied 6 applications of different laser pulse power (15, 30, 50, 100, 150 and 200 mW). The diameter of the injury zone was assessed ophthalmoscopically and histologically. Multifocal electroretinography was performed before and 30 minutes after exposure using a module for multifocal electroretinography Neuro-ERG (Neurosoft, Russia), topographically comparing a pattern of 61 hexagons with an ophthalmoscopic fundus picture. The amplitude (µV) of the P1 peak and the implicit times (ms) of the P1 and N1 peaks were estimated in the first-order response in the hexagons corresponding to the laser damage zones.
Results. When using a laser spot on the retina of 132 microns and 200 microns, the threshold level of laser radiation power for the development of significant local changes in the bioelectric activity of the retina was 50 and 30 mW, respectively (p < 0.05). The minimal diameter of the laser damage at which significant functional changes are recorded by multifocal electroretinography with a pattern stimulator consisting of 61 hexagons was 127.2 ± 6.4 µm (spot 132 µm, energy 50 mW), while a significant relationship was found between changes in the peak amplitude P1 and ophthalmoscopic and histological dimensions of the damage zone (r = 0.73 and r = 0.71, respectively, p < 0.01).
Conclusion. The use of multifocal electroretinography can be used to quantify functional changes in local laser damage to the retina in experimental studies on rabbits.
About the Authors
A. A. SuetovRussian Federation
Suetov Alexey A. – PhD, senior research officer
Lesoparkovaya str., 4, Saint-Petersburg, 195043
S. I. Alekperov
Russian Federation
Alekperov Sergey I. – PhD, head of department
Lesoparkovaya str., 4, Saint-Petersburg, 195043
M. A. Odinokaya
Russian Federation
Odinokaya Marianna A. – laboratory assistant-scientist
Lesoparkovaya str., 4, Saint-Petersburg, 195043
A. A. Kostina
Russian Federation
Kostina Anna A. – laboratory assistant-scientist
Lesoparkovaya str., 4, Saint-Petersburg, 195043
E. A. Petrova
Russian Federation
Petrova Ekaterina A. – laboratory assistant-scientist
Lesoparkovaya str., 4, Saint-Petersburg, 195043
References
1. Zolnikova I.V., Shamshinova A.M. Multifocal electroretinography: origin and diagnostic value. Annals of Ophthalmology = Vestnik oftal’mologii. 2005;121(3):47–50 (In Russ.).
2. Lai T.Y., Chan W.M., Lai R.Y., Ngai J.W., Li H., Lam D.S. The clinical applications of multifocal electroretinography: a systematic review. Surv. Ophthalmol. 2007;52:61– 96. DOI: 10.1016/j.survophthal.2006.10.005
3. Ball S., Petry H. Noninvasive assessment of retinal function in rats using multifocal electoretinography. Investig Ophthalmol Vis Sci. 2000;41:610–617.
4. Gjörloff K.W., Andréasson S., Ghosh F. mfERG in normal and lesioned rabbit retina. Graefe’s Arch Clin Exp Ophthalmol. 2006;244:83–89. DOI: 10.1007/s00417-005-0019-2
5. Hood D.C., Bearse M.A. Jr., Sutter E.E., Viswanathan S., Frishman L.J. The optic nerve head component of the monkey’s (Macaca mulatto) multifocal electroretinogram (mfERG). Vis. Res. 2001;41:2029–2041. DOI: 10.1016/S0042-6989(01)00010-4
6. Kyhn M.V., Kiilgaard J.F., Scherfig E., Prause J.U. The spatial resolution of the porcine multifocal electroretinogram for detection of laser-induced retinal lesions. Acta Ophthalmol. 2008; 86(7):786–793. DOI: 10.1111/j.1600-0420.2007.01020.x
7. Jain A.T., Blumenkranz M.S., Paulus Y., Wiltberger M.W., Andersen D.E., Huie P., Palanker D. Effect of pulse duration on size and character of the lesion in retinal photocoagulation. Arch. Ophthalmol. 2008;126(1):78–85.
8. Hood D.C., Bach M., Briqell M., Keating D., Kondo M., Lyons J.S. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc. Ophthalmol. 2012; 124(1):1–13. DOI: 10.1007/s10633-011-9296-8
9. Famiglietti E.V., Sharpe S.J. Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Vis Neurosci. 1995;12:1151–1175.
10. Williams D.L. The Rabbit Eye. In Williams D.L., ed. Ophthalmology of Exotic Pets. 1st edition. Blackwell Publishing Ltd; 2012:15–55. DOI: 10.1002/9781118709627.ch04
11. Greenstein V.C., Holopigian K., Hood D.C., Seiple W., Carr R.E. The nature and extent of retinal dysfunction associated with diabetic macular edema. Invest Ophthalmol Vis Sci. 2000;41(11):3643–3654.
12. Raz D., Perlman I., Percicot C.L., Lambrou G.N., Ofri R. Functional damage to inner and outer retinal cells in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2003;44:3675–3684. DOI: 10.1167/iovs.02-1236
13. Kim H.D., Han J.W., Ohn Y-H., Brinkmann R., Park T.K. Functional evaluation using multifocal electroretinogram after selective retina therapy with a microsecond-pulsed laser. Invest. Ophthalmol. Vis. Sci. 2015;56:122–131. DOI: 10.1167/iovs.14-15132
Review
For citations:
Suetov A.A., Alekperov S.I., Odinokaya M.A., Kostina A.A., Petrova E.A. Multifocal Electroretinography as a Method of Functional Assessment of Retinal Laser Injury in Experimental Studies. Ophthalmology in Russia. 2021;18(1):110-116. (In Russ.) https://doi.org/10.18008/1816-5095-2021-1-110-116