The Role of Optical Coherence Tomography in the Diagnosis of Angle Closed Diseases of the Anterior Chamber. Part 2: Visualization of the Posterior Segment of the Eye
https://doi.org/10.18008/1816-5095-2021-3-381-388
Abstract
The purpose of this work is to review the literature data on the role of optical coherence tomography in the diagnosis of diseases of the closed angle of the anterior chamber. The analysis of the use of modern technical devices — optical coherence tomography of the posterior segment, models with a frequency-modulated source (Swept Source) is presented. The emergence of new imaging technologies such as SS-OCT contributes to understanding the pathogenesis of primary angle closure diseases in terms of involvement of the choroid in the process. A thicker choroid in the macular area may be an anatomical risk factor for closed angle disease. The expansion of an abnormally thick choroid in combination with the structural features of the anterior segment in eyes with a short axial length, including against the background of psychoemotional stress, can lead to an attack of angle closure. Visualization of the structures of the posterior segment of the eye is an important part of the strategy aimed at solving the problem of identifying risk factors, diagnosing, monitoring and evaluating the effectiveness of treatment of diseases of primary angle closure. Qualitative and quantitative data analysis based on optical coherence tomography significantly increases the diagnostic accuracy, allows to determine its progression and to predict its course. This plays a key role in the choice of treatment tactics for the anterior chamber angle closure. The review considers the effect of local antihypertensive eye drops on the choroid.
Conclusion. Optical coherence tomography is a standard in modern diagnostics and evaluation of the effectiveness of treatment of diseases of primary angle closure, allowing a better understanding of the pathogenesis of the disease and its complex nature. Imaging improves the ability to accurately diagnose and choose the right treatment strategy.
About the Authors
N. I. KuryshevaRussian Federation
Kurysheva Natalia I - МD, Professor, Head of the Ophthalmology department, head of the Consultative and diagnostic department
Gamalei str., 15, Moscow, 123098
G. А. Sharova
Russian Federation
Sharova Galina A. - head of the Diagnostic ophthalmology department, laser surgeon
Budenny ave., 26/2, Moscow, 105118
References
1. Spaide R.F., Koizumi H., Pozzoni M.C. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008 Oct;146(4):496–500. DOI: 10.1016/j.ajo.2008.05.032
2. Adhi M., Liu J.J., Qavi A.H., Grulkowski I., Lu C.D., Mohler K.J., Ferrara D., Kraus M.F., Baumal C.R., Witkin A.J., Waheed N.K., Hornegger J., Fujimoto J.G., Duker J.S. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol. 2014 Jun;157(6):1272–1281.e1. DOI: 10.1016/j.ajo.2014.02.034
3. Park H.Y., Shin H.Y., Park C.K. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. Am J Ophthalmol. 2014 Mar;157(3):550–557. DOI: 10.1016/j.ajo.2013.11.008
4. Hong E.H., Seung Hun Park, Lee J.W., Lee J.H., Song I.S., Lee B.R. Comparison of Image Quality between Swept-Source and Spectral-Domain Optical Coherence Tomography According to Ocular Media Opacity. Journal of The Korean Ophthalmological Society. 2016;(57):248–255. DOI: 10.3341/jkos.2016.57.2.248
5. Friedman D.S., Gazzard G., Foster P., Devereux J., Broman A., Quigley H., Tielsch J., Seah S. Ultrasonographic biomicroscopy, Scheimpflug photography, and novel provocative tests in contralateral eyes of Chinese patients initially seen with acute angle closure. Arch Ophthalmol. 2003 May;121(5):633–642. DOI: 10.1001/archopht.121.5.633
6. Gazzard G., Friedman D.S., Devereux J., Seah S. Primary acute angle closure glaucoma associated with suprachoroidal fluid in three Chinese patients. Eye (Lond). 2001 Jun;15(Pt 3):358–360. DOI: 10.1038/eye.2001.124
7. Xinping Y., Weihua P., Mei R., Jia Q. Supraciliochoroidal fluid incidence at the early stage after trabeculectomy: study with anterior segment optical coherence tomography. Curr Eye Res. 2011 Sep;36(9):818–823. DOI: 10.3109/02713683.2011.593724
8. Quigley H.A. What’s the choroid got to do with angle closure? Arch Ophthalmol. 2009 May;127(5):693–694. DOI: 10.1001/archophthalmol.2009.8
9. Quigley H.A. Angle-closure glaucoma-simpler answers to complex mechanisms: LXVI Edward Jackson Memorial Lecture. Am J Ophthalmol. 2009 Nov;148(5):657–669.e1. DOI: 10.1016/j.ajo.2009.08.009
10. Quigley H.A., Friedman D.S., Congdon N.G. Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma. 2003 Apr;12(2):167–180. DOI: 10.1097/00061198-200304000-00013
11. Kim M., Kim S.S., Kwon H.J., Koh H.J., Lee S.C. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study. Invest Ophthalmol Vis Sci. 2012 Nov 27;53(12):7710–7717. DOI: 10.1167/iovs.12-10464
12. Li X.Q., Larsen M., Munch I.C. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci. 2011;52(11):8438–8441.
13. Zhang C., Tatham A.J., Medeiros F.A., Zangwill L.M., Yang Z., Weinreb R.N. Assessment of choroidal thickness in healthy and glaucomatous eyes using swept source optical coherence tomography. PLoS One. 2014 Oct 8;9(10):e109683. DOI: 10.1371/journal.pone.0109683
14. Wei W.B., Xu L., Jonas J.B. Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology. 2013;120:175–180.
15. Gao K., Li F., Li Y., Li X., Huang W., Chen S., Liu Y., Aung T., Zhang X. Anterior Choroidal Thickness Increased in Primary Open-Angle Glaucoma and Primary Angle-Closure Disease Eyes Evidenced by Ultrasound Biomicroscopy and SS-OCT. Invest Ophthalmol Vis Sci. 2018 Mar 1;59(3):1270–1277. DOI: 10.1167/iovs.1723037
16. Zhou M., Wang W., Huang W., Gao X., Li Z., Li X., Zhang X. Is increased choroidal thickness association with primary angle closure? Acta Ophthalmol. 2014 Nov;92(7):e514–e520. DOI: 10.1111/aos.12403
17. Arora K.S., Jefferys J.L., Maul E.A., Quigley H.A. Choroidal Thickness Increase Is Different among Angle-Closure Versus Open-Angle Eyes but Does Not Explain IOP Rise after Water Drinking. ARVO Meeting Abstracts. 2012;53(6):4173.
18. Kurysheva N.I., Boyarinceva M.A., Fomin A.V. Choroidal thickness in primary angle-closure glaucoma: the results of Measurement by Means of Optical Coherence Tomography. Ophthalmology in Russia = Oftal’mologiya. 2013;10(4):26–31 (In Russ.). DOI: 10.18008/1816-5095-2013-4-26-31
19. Zhou M., Wang W., Ding X., Huang W., Chen S., Laties A.M., Zhang X. Choroidal thickness in fellow eyes of patients with acute primary angle-closure measured by enhanced depth imaging spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013 Mar 19;54(3):1971–1978. DOI: 10.1167/iovs.12-11090
20. Wang W., Zhou M., Huang W., Chen S., Ding X., Zhang X. Does acute primary angle-closure cause an increased choroidal thickness? Invest Ophthalmol Vis Sci. 2013 May 1;54(5):3538–3545. DOI: 10.1167/iovs.13-11728
21. Huang W., Wang W., Gao X., Li X., Li Z., Zhou M., Chen S., Zhang X. Choroidal thickness in the subtypes of angle closure: an EDI-OCT study. Invest Ophthalmol Vis Sci. 2013 Dec 2;54(13):7849–7853. DOI: 10.1167/iovs
22. Hata M., Hirose F., Oishi A., Hirami Y., Kurimoto Y. Changes in choroidal thickness and optical axial length accompanying intraocular pressure increase. Jpn J Ophthalmol. 2012 Nov;56(6):564–568. DOI: 10.1007/s10384-012-0173-0
23. Song W., Huang P., Dong X., Li X., Zhang C. Choroidal Thickness Decreased in Acute Primary Angle Closure Attacks with Elevated Intraocular Pressure. Curr Eye Res. 2016 Apr;41(4):526–531. DOI: 10.3109/02713683.2015.1037002
24. Li F., Gao K., Li X., Chen S., Huang W., Zhang X. Anterior but not posterior choroid changed before and during Valsalva manoeuvre in healthy Chinese: a UBM and SS-OCT study. Br J Ophthalmol. 2017 Dec;101(12):1714–1719. DOI: 10.1136/bjophthalmol-2016-309881
25. Chen S., Wang W., Gao X., Li Z., Huang W., Li X., Zhou M., Zhang X. Changes in choroidal thickness after trabeculectomy in primary angle closure glaucoma. Invest Ophthalmol Vis Sci. 2014 Apr 21;55(4):2608–2613. DOI: 10.1167/iovs.13-13595
26. Usui S., Ikuno Y., Uematsu S., Morimoto Y., Yasuno Y., Otori Y. Changes in axial length and choroidal thickness after intraocular pressure reduction resulting from trabeculectomy. Clin Ophthalmol. 2013;7:1155–1161. DOI: 10.2147/OPTH.S44884
27. Saeedi O., Pillar A., Jefferys J., Arora K., Friedman D., Quigley H. Change in choroidal thickness and axial length with change in intraocular pressure after trabeculectomy. Br J Ophthalmol. 2014 Jul;98(7):976–979. DOI: 10.1136/bjophthalmol-2013-30443
28. Kara N., Baz O., Altan C., Satana B., Kurt T., Demirok A. Changes in choroidal thickness, axial length, and ocular perfusion pressure accompanying successful glaucoma filtration surgery. Eye (Lond). 2013 Aug;27(8):940–945. DOI: 10.1038/eye.2013.116
29. Reddy A.C, Salim S. Diagnosis and management of choroidal effusions. Eyenet. 2012;47–49.
30. Callahan C., Ayyala R.S. Hypotony and choroidal effusion induced by topical timolol and dorzolamide in patients with previous glaucoma drainage device implantation. Ophthalmic Surg Lasers Imaging. 2003 Nov-Dec;34(6):467–469.
31. Sakai H., Ishikawa H., Shinzato M., Nakamura Y., Sakai M., Sawaguchi S. Prevalence of ciliochoroidal effusion after prophylactic laser iridotomy. Am J Ophthalmol. 2003 Sep;136(3):537–538. DOI: 10.1016/s0002-9394(03)00238-1
32. Goldberg S., Gallily R., Bishara S., Blumenthal E.Z. Dorzolamide-induced choroidal detachment in a surgically untreated eye. American journal of ophthalmology. 2004 Aug;138(2):285–286. DOI: 10.1016/j.ajo.2004.02.070
33. Malagola R., Arrico L., Giannotti R., Pattavina L. Acetazolamide-induced ciliochoroidal effusion after cataract surgery: unusual posterior involvement. Drug Des Devel Ther. 2013;7:33–36. DOI: 10.2147/DDDT.S38324
34. Parthasarathi S., Myint K., Singh G., Mon S., Sadasivam P., Dhillon B. Bilateral acetazolamide-induced choroidal effusion following cataract surgery. Eye (Lond). 2007 Jun;21(6):870–872. DOI: 10.1038/sj.eye.6702741
35. Mancino R., Varesi C., Cerulli A., Aiello F., Nucci C. Acute bilateral angle- closure glaucoma and choroidal effusion associated with acetazolamide administration after cataract surgery. J Cataract Refract Surg. 2011 Feb;37(2):415–417.
36. Davani S., Delbosc B., Royer B., Kantelip J.P. Choroidal detachment induced by dorzolamide 20 years after cataract surgery. Br J Ophthalmol. 2002 Dec;86(12):1457–1458. DOI: 10.1136/bjo.86.12.1457
37. Doherty M.D., Wride N.K., Birch M.K., Figueiredo F.C. Choroidal detachment in association with topical dorzolamide: is hypotony always the cause? Clin Exp Ophthalmol. 2009 Sep;37(7):750–752. DOI: 10.1111/j.1442-9071.2009.02113.x
38. Donmez O., Kilinc H., Ozbek Z., Saatci A.O. Bilateral Choroidal Detachment Induced by Unilateral Application of a Fixed Combination of Topical Timolol Maleate and Brinzolamide. Med Hypothesis Discov Innov Ophthalmol. 2016 Winter;5(4):121–124.
39. Kurysheva N.I., Pererva O.A., Ivanova A.A., Sharova G.A. A clinical case of choroidal effusion associated with the use of carbonic anhydrase inhibitors. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya.. 2021;1:63–67 (In Russ.). DOI: 10.25276/02354160-2021-1-63-67
40. Kurysheva N.I., Lepeshkina L.V., Shatalova E.O. Comparative study of factors associated with the progression of primary open-angle glaucoma and primary angle-closure glaucoma. Annals of Ophthalmology = Vestnik oftal’mologii. 2020;136(2):64–72 (In Russ.). DOI: 10.17116/oftalma202013602164
41. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014 Nov;121(11):2081–2090. DOI: 10.1016/j.ophtha.2014.05.013
42. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006 Mar;90(3):262–627. DOI: 10.1136/bjo.2005.081224
43. Dandona L., Dandona R., Mandal P. Angle-closure glaucoma in an urban population in southern India. The Andhra Pradesh Eye Disease Study. Ophthalmology. 2000;107(9):1710–1716. DOI: 10.1016/s0161-6420(00)00274-8
44. Na J.H., Sung K.R., Lee J.R. Detection of glaucomatous progression by spectraldomain optical coherence tomography. Ophthalmology. 2013;120:1388–1395 DOI: 10.1016/j.ophtha.2012.12.014
45. Zhang X., Dastiridou A., Francis B. Comparison of glaucoma progression detection by optical coherence tomography and visual field. Am J Ophthalmol. 2017;184:63–74. DOI: 10.1016/j.ajo.2017.09.020
46. Yu M., Lin C., Weinreb R.N. Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning: a 5-year prospective study. Ophthalmology. 2016;123(6):1201–1210. DOI: 10.1016/j.ophtha.2016.02.017
47. Lee Y.H., Kim C.S., Hong S. Rate of visual field progression in primary openangle glaucoma and primary angle-closure glaucoma. Korean J Ophthalmol. 2004;18(2):106–115. DOI: 10.3341/kjo.2004.18.2.106
48. Verma S., Nongpiur M.E., Atalay E. Visual field progression in patients with primary angle-closure glaucoma using pointwise linear regression analysis. Ophthalmology. 2017;124(7):1065–1071. DOI: 10.1016/j.ophtha.2017.02.027
49. Fan N.W., Hwang D.K., Ko Y.C. Risk factors for progressive visual field loss in primary angle-closure glaucoma: a retrospective cohort study. PLoS ONE. 2013;8(7):e69772. DOI: 10.1371/journal.pone.0069772
50. Su W.W., Hsieh S.S., Cheng S.T., Su C.W., Wu W.C., Chen H.S. Visual Subfield Progression in Glaucoma Subtypes. J Ophthalmol. 2018 Mar 21;2018:7864219. DOI: 10.1155/2018/7864219
51. Kurysheva N.I., Lepeshkina L.V. Detection of Primary Angle Closure Glaucoma Progression by Optical Coherence Tomography. J Glaucoma. 2021 Mar 5. DOI: 10.1097/IJG.0000000000001829. Online ahead of print.
52. Hood D.C., Raza A.S., de Moraes C.G., Liebmann J.M., Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013 Jan;32:1–21. DOI: 10.1016/j.preteyeres.2012.08.003
53. Rao H.L., Srinivasan T., Pradhan Z.S., Sreenivasaiah S., Rao D.A.S., Puttaiah N.K., Devi S., Moghimi S., Mansouri K., Webers C.A.B., Weinreb R.N. Optical Coherence Tomography Angiography and Visual Field Progression in Primary Angle Closure Glaucoma. J Glaucoma. 2020 Dec 2. DOI: 10.1097/IJG.0000000000001745
54. Kurysheva N.I. Reduced retinal microcirculation may predict glaucoma progression. EPMA J Congress Supplement 2020. 2020;11(Suppl 1):S82–84. DOI: 10.1007/s13167-020-00206-1
55. Yousefi S., Sakai H., Murata H., Fujino Y., Matsuura M., Garway-Heath D., Weinreb R., Asaoka R. Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns. Invest Ophthalmol Vis Sci. 2018 Dec 3;59(15):5717–5725. DOI: 10.1167/iovs.18-25140
56. Gazzard G., Foster P.J., Viswanathan A.C., Devereux J.G., Oen F.T., Chew P.T., Khaw P.T., Seah S.K. The severity and spatial distribution of visual field defects in primary glaucoma: a comparison of primary open-angle glaucoma and primary angle-closure glaucoma. Arch Ophthalmol. 2002 Dec;120(12):1636–1643. DOI: 10.1001/archopht.120.12.1636
57. Han F., Yuan Y.S. Characteristics of visual field defects in primary angle-closure glaucoma. Zhonghua Yan Ke Za Zhi. 2009 Jan;45(1):14–20.
58. Ballae Ganeshrao S., Senthil S., Choudhari N., Sri Durgam S., Garudadri C.S. Comparison of Visual Field Progression Rates Among the High Tension Glaucoma, Primary Angle Closure Glaucoma, and Normal Tension Glaucoma. Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):889–900. DOI: 10.1167/iovs.18-25421
Review
For citations:
Kurysheva N.I., Sharova G.А. The Role of Optical Coherence Tomography in the Diagnosis of Angle Closed Diseases of the Anterior Chamber. Part 2: Visualization of the Posterior Segment of the Eye. Ophthalmology in Russia. 2021;18(3):381-388. (In Russ.) https://doi.org/10.18008/1816-5095-2021-3-381-388