Preview

Ophthalmology in Russia

Advanced search

Dynamic Biometric Indicators of the Anterior Segment Structure of the Eye in Primary Angle-Closure Glaucoma

https://doi.org/10.18008/1816-5095-2021-3-470-475

Abstract

Introduction. Primary angle-closure glaucoma (PACG) remains one of the leading causes of irreversible blindness. Up to date, a significant amount of data has been accumulated concerning the biometric parameters of the eye in PACG, however, there is a lack of information on the dynamic characteristics of these parameters.

Objective: to evaluate the dynamic biometric characteristics of the structures of the anterior segment of the eye in PACG.

Patients and methods. The results of optical coherence tomography were analyzed in 40 patients with PACG and in 40 patients without signs of hydrodynamic disorder. The studies were carried out under photopic and mesopic illumination conditions. The scanned images were obtained using an RTVue-100-2 optical coherence tomograph device (Optovue, USA). Biometric measurements were performed using standard tomograph software; volumetric studies were carried out based on the Pappus-Guldinus theorem with additional constructions. When analyzing the obtained images, 13 different linear and volumetric parameters were evaluated.

Results. A decrease in the parameters reflecting the features of the configuration of the anterior chamber of the eye was noted in the presence of PACG (width of the ACA, depth and volume of the anterior chamber). From the point of view of the possible influence on the state of the anterior chamber angle, it is necessary to highlight changes in such indicators as the area, volume and thickness of the iris. Regardless of the conditions of the examination, these indicators, on average, were significantly higher in the PACG and practically did not change with a decrease in the level of illumination. At the same time, in the absence of disturbances in hydrodynamics under mesopic conditions, despite an increase in the thickness of the iris, a significant decrease in its area and volume was noted.

Conclusion. Biometric changes in the structures of the anterior segment of the eye in the case of PACG relate not only to linear, but also to volumetric indicators. As a certain component of hydrodynamic disorders in the case of PACG, the revealed preservation of the iris volume during pupil dilation under mesopic illumination conditions should be considered, while in the absence of hydrodynamic disorders, this indicator decreased. Therefore, not only static changes in the biometric characteristics of the structures of the anterior segment of the eye, but also their dynamic fluctuations, should be considered as a risk factor for clinical manifestations of PACG, which determines the practical significance of dynamic biometric studies in the examination of patients with suspected PACG.

About the Authors

G. V. Voronin
Research Institute of Eye Diseases; Department of Eye Diseases of the N.V. Sklifosovsky Institute of Clinical Medicine of the I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Voronin Grigoriy V., MD, Professor 

Rossolimo str., 11A, B, Moscow, 119021;
Trubetskaya str., 8, buld. 2, Moscow, 119991



A. A. El-Sangahawi
Department of Eye Diseases of the N.V. Sklifosovsky Institute of Clinical Medicine of the I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

El-Sangahawi Ahmed Awad, postgraduate 

Trubetskaya str., 8, buld. 2, Moscow, 119991



K. S. Avetisov
Research Institute of Eye Diseases
Russian Federation

Avetisov Konstantin S., MD, leading researcher 

Rossolimo str., 11A, B, Moscow, 119021



V. D. Yartsev
Research Institute of Eye Diseases
Russian Federation

Yartsev Vasily D., PhD, senior researcher 

Rossolimo str., 11A, B, Moscow, 119021



M. N. Narbut
Research Institute of Eye Diseases
Russian Federation

Narbut Maria N., junior researcher 

Rossolimo str., 11A, B, Moscow, 119021



References

1. Han S., Sung K.R., Lee K.S., Hong J.W. Outcomes of laser peripheral iridotomy in angle closure subgroups according to anterior segment optical coherence tomography parameters. Invest Ophthalmol Vis Sci. 2014;55(10):6795–6801. DOI: 10.1167/iovs.14-14714

2. Ritch R., Lowe R.F. Angle Closure Glaucoma. In: Ritch R., Shields M.B., Krupin T., eds. The Glaucomas. St. Louis: Mosby; 1996. P. 801–840.

3. Weinreb R.N., Friedman D.S. Angle Closure and Angle Closure Glaucoma : Consensus Series — 3. The Hague: SPB Academic Publishing BV; 2006. 113 p.

4. Congdon N.G., Friedman D.S. Angle-closure glaucoma: impact, etiology, diagnosis, and treatment. Curr Opin Ophthalmol. 2003;14(2):70–73. DOI: 10.1097/00055735200304000-00002

5. Huang E.C., Barocas V.H. Active iris mechanics and pupillary block: steadystate analysis and comparison with anatomical risk factors. Ann Biomed Eng. 2004;32(9):1276–1285. DOI: 10.1114/b:abme.0000039361.17029.da

6. Thomas R., George R., Parikh R., Muliyil J., Jacob A. Five year risk of progression of primary angle closure suspects to primary angle closure: a population based study. Br J Ophthalmol. 2003;87(4):450–454.

7. Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–1911. DOI: 10.1001/jama.2014.3192

8. Aung T., Ang L.P., Chan S.P., Chew P.T. Acute primary angle-closure: long-term intraocular pressure outcome in Asian eyes. Am J Ophthalmol. 2001;131(1):7–12. DOI: 10.1016/s0002-9394(00)00621-8

9. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. DOI: 10.1016/j.ophtha.2014.05.013

10. Chua J., Seet L.F., Jiang Y., Su R., Htoon H.M., Charlton A., Aung T., Wong T.T. Increased SPARC expression in primary angle closure glaucoma iris. Mol Vis. 2008;14:1886–1892.

11. He M., Lu Y., Liu X., Ye T., Foster P.J. Histologic changes of the iris in the development of angle closure in Chinese eyes. J Glaucoma. 2008;17(5):386–392. DOI: 10.1097/IJG.0b013e31815c5f69

12. Narayanaswamy A., Nai M.H., Nongpiur M.E., Htoon H.M., Thomas A., Sangtam T., Lim C.T., Wong T.T., Aung T. Young’s Modulus Determination of Normal and Glaucomatous Human Iris. Invest Ophthalmol Vis Sci. 2019;60(7):2690–2695. DOI: 10.1167/iovs.18-26455

13. Congdon N.G., Youlin Q., Quigley H., Hung P.T., Wang T.H., Ho T.C., Tielsch J.M. Biometry and primary angle-closure glaucoma among Chinese, white, and black populations. Ophthalmology. 1997;104(9):1489–1495.

14. Quigley H.A., Silver D.M., Friedman D.S., He M., Plyler R.J., Eberhart C.G., Jampel H.D., Ramulu P. Iris cross-sectional area decreases with pupil dilation and its dynamic behavior is a risk factor in angle closure. J Glaucoma. 2009;18(3):173–179. DOI: 10.1097/IJG.0b013e31818624ce

15. Amini R., Whitcomb J.E., Prata T.S., Dorairaj S., Liebmann J.M., Ritch R., Barocas V.H. Quantification of iris concavity. J Ophthalmic Vis Res. 2010;5(3):211–212.

16. Aptel F., Chiquet C., Beccat S., Denis P. Biometric evaluation of anterior chamber changes after physiologic pupil dilation using Pentacam and anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(7):4005–4010. DOI: 10.1167/iovs.11-9387

17. Aptel F., Denis P. Optical coherence tomography quantitative analysis of iris volume changes after pharmacologic mydriasis. Ophthalmology. 2010;117(1):3–10. DOI: 10.1016/j.ophtha.2009.10.030

18. Seet L.F., Narayanaswamy A., Finger S.N., Htoon H.M., Nongpiur M.E., Toh L.Z., Ho H., Perera S.A., Wong T.T. Distinct iris gene expression profiles of primary angle closure glaucoma and primary open angle glaucoma and their interaction with ocular biometric parameters. Clin Exp Ophthalmol. 2016;44(8):684–692. DOI: 10.1111/ceo.12743

19. Tousimis A.J., Fine B.S. Ultrastructure of the iris: the intercellular stromal components. Arch Ophthalmol. 1959;62:974–976.

20. Wang B., Nongpiur M.E., Liu J., Dong N., Aung T. Analysis of Association Between the Insertion Location of Iris Root and Narrow Angle. J Glaucoma. 2015;24(6):433–437. DOI: 10.1097/IJG.0b013e31829f9c50

21. Zhang Y., Li S.Z., Li L., He M.G., Thomas R., Wang N.L. Quantitative analysis of iris changes after physiologic and pharmacologic mydriasis in a rural Chinese population. Invest Ophthalmol Vis Sci. 2014;55(7):4405–4412. DOI: 10.1167/iovs.13-13782


Review

For citations:


Voronin G.V., El-Sangahawi A.A., Avetisov K.S., Yartsev V.D., Narbut M.N. Dynamic Biometric Indicators of the Anterior Segment Structure of the Eye in Primary Angle-Closure Glaucoma. Ophthalmology in Russia. 2021;18(3):470-475. (In Russ.) https://doi.org/10.18008/1816-5095-2021-3-470-475

Views: 748


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)