Peripheral Refraction, Wave Front of the Eye and Visual Performance in the Correction of Myopia in Children with Bifocal Soft Contact Lenses with High Addition
https://doi.org/10.18008/1816-5095-2021-3-518-526
Abstract
Purpose: to study the effect of bifocal soft contact lens (BSCL) with an ADD of 4 diopters on peripheral refraction (PR), optical and ergonomic eye parameters in children with myopia.
Patients and methods. 26 patients (52 eyes) with myopia –3.09 ± 1.13 diopters at the age of 10.04 ± 1.5 years without correction and with correction by BSCL Prima BIO Bi-focal ( Okay Vision Retail, Russia). All patients underwent a horizontal and vertical PR study on an open field autorefractometer Grand Seiko WAM-5500 (Japan), wavefront aberrations were studied on OPD-Scan III aberrometer (Nidek, Japan), contrast sensitivity under mesopic conditions were studied on a Mesotest 2 instrument (Oculus, Germany) and visual productivity was studied using test tables.
Results. The visual acuity of the distance with a BSCL correction of 0.98 ± 0.04 did not differ (p = 0.26) from the maximum visual acuity corrected by spherocylindrical glasses of 0.99 ± 0.04. BSCL induces myopic defocus in all peripheral zones, with a maximum value of 15° and a sharp decrease of 30°. Peripheral myopic defocus induced by the lens at a horizontal and vertical angle of 15 degrees did not depend on the initial degree of myopia. BSCL increases the total RMS from 0.07 ± 0.02 μm to 0.19 ± 0.07 μm in the 3 mm zone (p < 0.01) and from 0.27 ± 0.09 μm to 1.18 ± 0, 23 μm in the 6 mm zone (p < 0.01), mainly due to an increase in spherical aberration from –0.0005 ± 0.006 μm to 0.06 ± 0.01 μm (p < 0.01) and from 0.01 ± 0.09 μm to 0.58 ± 0.14 μm (p < 0.01) in the 3 mm and 6 mm zones, respectively. An increase in the overall RMS in BSCL reduces the quality of eye optics and contrast sensitivity under mesopic conditions, but does not impair visual productivity.
Conclusion. BSCLs with a high ADD of 4 diopters are capable of inducing significant myopic peripheral defocus due to the induction of spherical aberration, while maintaining high visual acuity and not changing ophthalmic ergonomics, which makes them a pathogenetically substantiated method for correcting myopia and preventing its progression in children and adolescents.
About the Authors
E. P. TaruttaRussian Federation
Tarutta Elena P., MD, Professor, head, department of refractive pathology, binocular vision and ophthalmoergonomics
Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062
S. V. Milash
Russian Federation
Milash Sergei V., researcher, department of refraction pathology, binocular vision and ophthalmoergonomics
Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062
M. V. Epishina
Russian Federation
Epishina Marina V., PhD, head, department of contact vision correction
Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062
References
1. Chakraborty R., Ostrin L.A., Benavente-Perez A. Optical mechanisms regulating emmetropisation and refractive errors: evidence from animal models. Clin Exp Optom. 2020;103:55–67. DOI: 10.1111/cxo.12991
2. Troilo D., Smith E.L. 3rd, Nickla D.L. IMI — report on experimental models of emmetropization and myopia. Invest Ophthalmol Vis Sci. 2019;60:M31–M88. DOI: 10.1167/iovs.18-25967
3. Wildsoet C.F., Chia A., Cho P., Guggenheim J.A., Polling J.P., Read S. IMI — interventions for controlling myopia onset and progression report. Invest Ophthalmol Vis Sci. 2019;60(3):M106–M13. DOI: 10.1167/iovs.18-25958
4. Nichols J.J. A status quo remains for much of the contact lens industry. Contact Lens Spectrum. 2017;32:22–55.
5. Huang J., Wen D., Wang Q. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology. 2016;123:697–708. DOI: 10.1016/j.ophtha.2015.11.010
6. Prousali E. Efficacy and safety of interventions to control myopia progression in children: an overview of systematic reviews and meta-analyses. BMC Ophthalmol. 2019;19(1):106. DOI: 10.1186/s12886-019-1112-3
7. Li S.M., Kang M.T., Wu S.S. Studies using concentric ring bifocal and peripheral add multifocal contact lenses to slow myopia progression in school aged children: a meta-analysis. Ophthalmic Physiol Opt. 2017;37:51–59. DOI: 10.1111/opo.12332
8. Chamberlain P. A 3-year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optometry and Vision Science. 2019;96(8):556–567. DOI: 10.1097/OPX.0000000000001410
9. Avetisov S.E., Myagkov A.V., Egorova A.V. Correcting progressive myopia with bifocal contact lenses with central zone for distant vision: changes in accommodation and axial length (a preliminary report). Annals of Ophthalmology = Vestnik oftal’mologii 2019;135(1):42–46 (In Russ.). DOI: 10.17116/oftalma201913501142
10. Tarutta E.P., Milash S.V., Tarasova N.A. Romanova L.I., Markosyan G.A., Epishina M.V. Peripheral refraction and retinal contour in children with myopia by results of refractometry and partial coherence interferometry. Annals of Ophthalmology = Vestnik oftal’mologii. 2014;6:44–49 (In Russ.).
11. Patent RU 2367335, 20.09.2009. Egorova T.S., Neroeva N.V. Sposob opredeleniya zritel’noj produktivnosti. Accessed 10.01.2020 (In Russ.). http://www.freepatent.ru/patents/2367335
12. Tarutta E.P., Iomdina E.N., Kvarachelija N.G. Milash S.V., Kruzhkova G.V. Peripheral refraction: cause or effect of refraction development? Annals of Ophthalmology = Vestnik oftal’mologii 2017;1:70–74 (In Russ.). DOI: 10.17116/oftalma2017133170-74
13. Shen J., Spors F., Egan D. Peripheral refraction and image blur in four meridians in emmetropes and myopes. Clin Ophthalmol. 2018;12:345–358. DOI: 10.2147/OPTH.S151288
14. Verkicharla P.K., Suheimat M., Schmid K.L., Atchison D.A. Peripheral refraction, peripheral eye length, and retinal shape in myopia. Optom Vis Sci. 2016;93:1072–1078. DOI: 10.1097/OPX.0000000000000905
15. Atchison D.A., Pritchard N., Schmid K.L. Shape of the retinal surface in emmetropia and myopia. Invest Ophthalmol Vis Sci. 2005;46:2698–2707. DOI: 10.1167/iovs.04-1506
16. Fedtke C., Ehrmann K., Bakaraju R. C. P. Peripheral refraction and spherical aberration profiles with single vision, bifocal and multifocal soft contact lenses. J Optom. 2020;13:15–28. DOI: 10.1016/j.optom.2018.11.002
17. Tarutta E.P., Milash S.V., Tarasova N.A. Induced peripheral defocus and the shape of the posterior eye pole in orthokeratological myopia correction. Russian ophthalmological journal = Rossiyskiy oftal’mologicheskiy zhurnal. 2015;8(3):52–56 (In Russ.).
18. González-Méijome J.M., Faria-Ribeiro M.A., Lopes-Ferreira D.P., Fernandes P., Carracedo G., Queiros A. Changes in peripheral refractive profile after orthokeratology for different degrees of myopia. Current eye research. 2016;2:199–207. DOI: 10.3109/02713683.2015.1009634
19. Fedtke C., Ehrmann K., Thomas V., Bakaraju R.C. Peripheral refraction and aberration profiles with multifocal lenses. Optom Vis Sci. 2017;94:876–885. DOI: 10.1097/OPX.0000000000001112
20. Gifford P., Li M., Lu H., Miu J., Panjaya M., Swarbrick H.A. Corneal versus ocular aberrations after overnight orthokeratology. Optom Vis Sci. 2013;90:439– 447. DOI: 10.1097/OPX.0b013e31828ec594
21. Zhang H., Wang Y., Li H. Corneal spherical aberration and corneal asphericity after small incision lenticule extraction and femtosecond laser-assisted LASIK. J Ophthalmol. 2017; 27 Aug. DOI: 10.1155/2017/4921090
22. Liu J.P., Zhang F., Zhao J.Y., Ma L.W., Zhang J.S. Visual function and higher or‑ der aberration after implantation of aspheric and spherical multifocal intraocular lenses: a meta-analysis. Int J Ophthalmol. 2013;6:690–695. DOI: 10.3980/j.issn.2222-3959.2013.05.27
23. Przekoracka K. Contrast sensitivity and visual acuity in subjects wearing multifocal contact lenses with high additions designed for myopia progression control. Contact Lens and Anterior Eye. 2020;43(1):33–39.
24. Hiraoka T., Okamoto C., Ishii Y. Mesopic contrast sensitivity and ocular higherorder aberrations after overnight orthokeratology. Am J Ophthalmol. 2008;145:645–655. DOI: 10.1016/j.ajo.2007.11.021
25. Tarutta E.P., Egorova T.S., Alyaeva O.O., Verzhanskaya T.Yu. Ophthalmoergonomic and Functional Parameters in Effectiveness Estimation of Orthokeratologic Correction of Myopia in Children and Teenagers. Russian ophthalmological journal = Rossiyskiy oftal’mologicheskiy zhurnal. 2012;3:63–66 (In Russ.).
Review
For citations:
Tarutta E.P., Milash S.V., Epishina M.V. Peripheral Refraction, Wave Front of the Eye and Visual Performance in the Correction of Myopia in Children with Bifocal Soft Contact Lenses with High Addition. Ophthalmology in Russia. 2021;18(3):518-526. (In Russ.) https://doi.org/10.18008/1816-5095-2021-3-518-526