Preview

Ophthalmology in Russia

Advanced search

The Role of Mitophagy in Hereditary Optic Neuropathies. Literature Review

https://doi.org/10.18008/1816-5095-2021-3S-646-653

Abstract

The role of mitophagy in hereditary optic neuropathies is considering in this review. Mitochondria are intracellular double membrane organelles. They are one of the main components of all eukaryotic cells, they perform many different functions in the cell. However, the main function of mitochondria is to supply cells with energy in the form of ATP. The ATP synthesis is carried out due to the respiratory chain five protein complexes work, the main components of the chain are located in the inner mitochondrial membrane. It is known that proteins that form all respiratory chain complexes (except II) are encoded by both nuclear and mitochondrial genes. The mitochondrial electron transport chain dysfunction leads to the mitochondrial diseases development, which can be a result of mutations both in mtDNA and in nDNA. The most common eye mitochondrial diseases are hereditary optic neuropathies (HON), such as Leber Hereditary Optic Neuropathy (LHON). The main cause leading to the disease are mtDNA mutations. These mutations lead to the respiratory chain complexes dysfunction (mainly I), which results in mitochondrial damage. To remove damaged mitochondria in time, cells have special regulatory systems. These systems are responsible for the damaged mitochondria detection, isolation and degradation through a specific form of autophagy, mitophagy. For normal functioning, cells need to maintain a constant balance between mitochondrial biogenesis and mitophagy. A violation of this balance leads to the disease. It was revealed that mitophagy, an important retinal ganglion cells protection mechanism, is impaired in patients with LHON. The mitophagy activation may have the therapeutic potential. Some pharmacological agents activate mitophagy and thereby slow down the disease development in patients with hereditary optic neuropathies, such as LHON. Some of them, such as rapamycin, trehalose, metformin, spermidine, NAD+ , are described in the review.

About the Authors

N. A. Andreeva
Research Institute of Eye Diseases
Russian Federation

Andreeva Nataliya A., PhD, researcher of Retinal and Optic Nerve Pathology Department 

Rossolimo str., 11A, B, Moscow, 119021



N. L. Sheremet
Research Institute of Eye Diseases
Russian Federation

Sheremet Nataliya L., MD, chief researcher of Retinal and Optic Nerve Pathology Department 

Rossolimo str., 11A, B, Moscow, 119021



Yu. K. Murakhovskaya
Research Institute of Eye Diseases
Russian Federation

Murakhovskaya Iulia K., resident

Rossolimo str., 11A, B, Moscow, 119021



A. A. Dayal
Institute of Protein Research of Russian Academy of Sciences
Russian Federation

Dayal Alexander A., research engineer 

Vavilova str., 34, Moscow, 119334



A. A. Minin
Institute of Protein Research of Russian Academy of Sciences
Russian Federation

Minin Alexander A., candidate of biological sciences, leading researcher, head of the Cell Biology Department 

Vavilova str., 34, Moscow, 119334



References

1. Nicholls D.G., Budd S.L. Mitochondria and neuronal survival. Physiol Rev. 2000;80(1):315–360. DOI: 10.1152/physrev.2000.80.1.315

2. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–1159. DOI: 10.1016/j.cell.2012.02.035

3. Kerr J.F., Wyllie A.H., Currie A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257. DOI: 10.1038/bjc.1972.33

4. Bernardi P. Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol. Rev. 1999;79(4):1127–1155. DOI: 10.1152/physrev.1999.79.4.1127

5. Gorman G.S., Chinnery P.F., DiMauro S., Hirano M., Koga Y., McFarland R., Suomalainen A., Thorburn D.R., Zeviani M., Turnbull D.M. Mitochondrial diseases. Nat Rev Dis Primers 2016;2:16080. DOI: 10.1038/nrdp.2016.80

6. Keogh M.J., Chinnery P.F. Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta. 2015;1847(11):1401–1411. DOI: 10.1016/j.bbabio.2015.05.015

7. Carroll J., Fearnley Ian M., Skehel J. Mark, Shannon Richard J., Hirst J, John E. Walker. Bovine Complex I Is a Complex of 45 Different Subunits. J. Biol. Chem. 2006;281:32724–32727. DOI: 10.1074/jbc.M607135200

8. Benard G., Faustin B., Passerieux E., Galinier A., Rocher C., Bellance N., Delage J.-P., Casteilla L., Letellier T., Rossignol R. Physiological diversity of mitochondrial oxidative phosphorylation. Am. J. Physiol. Cell Physiol. 2006;291:1172–1182. DOI: 10.1152/ajpcell.00195.2006

9. Taylor R.W., Turnbull D.M. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6(5):389–402. DOI: 10.1038/nrg1606

10. DiMauro S., Schon E.A. Mitochondrial disorders in the nervous system. Annu Rev Neurosci. 2008;31:91–123. DOI: 10.1146/annurev.neuro.30.051606.094302

11. Wallace D.C. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010;51(5):440–450. DOI: 10.1002/em.20586

12. Stenton S.L., Prokisch H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine. 2020;56:102784. DOI: 10.1016/j.ebiom.2020.102784

13. Chow J., Rahman J., Achermann J.C., Dattani M.T., Rahman S. Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol. 2017;13(2):92–104. DOI: 10.1038/nrendo.2016.151

14. Globa O.V., Zhurkova N.V., Kondakova O.B., Tikhomirov E.E., Basargina E.N., Semenova N.Iu., Maslova O.I., Kuzenkova L.M., Pinelis V.G. Clinical mtochondrial dysfunction polymorphism in children. Modern problems of science and education = Sovremennye problemy nauki i obrazovaniya. 2008;4:52–53 (In Russ.).

15. Carelli V., Ross-Cisneros F.N., Sadun A.A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004;23(1):53–89. DOI: 10.1016/j.preteyeres.2003.10.003

16. Wong-Riley M.T. Energy metabolism of the visual system. Eye Brain. 2010;2:99–116. DOI: 10.2147/EB.S9078

17. Niven J.E., Laughlin S.B. Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology. 2008;211(11):1792–1804. DOI: 10.1242/jeb.017574

18. Chhetri J., Gueven N. Targeting mitochondrial function to protect against vision loss. Expert Opin Ther Targets. 2016;20(6):721–736. DOI: 10.1517/14728222.2015.1134489

19. Fraser J.A., Biousse V., Newman N.J. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol. 2010;55(4):299–334. DOI: 10.1016/j.survophthal.2009.10.002

20. Kim U.S., Jurkute N., Yu-Wai-Man P. Leber Hereditary Optic Neuropathy-Light at the End of the Tunnel. Asia Pac J Ophthalmol (Phila). 2018;7(4):242–245. DOI: 10.22608/APO.2018293

21. Yu-Wai-Man P., Griffiths P., Chinnery P.F. Mitochondrial optic neuropathies — Disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30(22):81–114. DOI: 10.1016/j.preteyeres.2010.11.002

22. Sheremet N.L., Andreeva N.A., Shmelkova M.S. Tsigankova P.G. Mitochondrial Biogenesis In Hereditary Optic Neuropathies. Russia Annals of Ophthalmology = Vestnik Oftalmologii. 2019;135(5):85–91 (In Russ.). DOI: 10.17116/oftalma201913505185

23. Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005;8(1):3–5. DOI: 10.1089/rej.2005.8.3

24. Skeie J.M., Nishimura D.Y., Wang C.L., Schmidt G.A., Aldrich B.T., Greiner M.A. Mitophagy: An Emerging Target in Ocular Pathology. Investigative Ophthalmology & Visual Science. 2021;62(3):22. DOI: 10.1167/iovs.62.3.22

25. Dikic I., Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–364. DOI: 10.1038/s41580-018-0003-4

26. Mizushima N., Ohsumi Y., Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct. 2002 ;27(6):421–429. DOI: 10.1247/csf.27.421

27. Khaminets A., Behl C., Dikic I. Khaminets A, Behl C, Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol. 2016;26(1):6–16. DOI: 10.1016/j.tcb.2015.08.010

28. Shen Z., Li Y., Gasparski A.N., Abeliovich H., Greenberg M.L. Cardiolipin Regulates Mitophagy through the Protein Kinase C Pathway. J Biol Chem. 2017;292(7):2916–2923. DOI: 10.1074/jbc.M116.753574

29. Baixauli F., López-Otín C., Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol. 2014;5:403. DOI: 10.3389/fimmu.2014.00403

30. Palikaras K., Lionaki E., Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013–1022. DOI: 10.1038/s41556-018-0176-2

31. Takatori S., Ito G., Iwatsubo T. Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett. 2008;430(1):13–17. DOI: 10.1016/j.neulet.2007.10.019

32. Wanderoy S., Hees J.T., Klesse R., Edlich F., Harbauer A.B. Kill one or kill the many: interplay between mitophagy and apoptosis. Biol Chem. 2020;402(1):73–88. DOI: 10.1515/hsz-2020-0231

33. Schweers R.L., Zhang J., Randall M.S., Loyd M.R., Li W., Dorsey F.C., Kundu M., Opferman J.T., Cleveland J.L., Miller J.L., Ney P.A. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA. 2007;104(49):19500–19505. DOI: 10.1073/pnas.0708818104

34. Chandel N.S., Jasper H., Ho T.T., Passegué E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat Cell Biol. 2016;18(8):823–832. DOI: 10.1038/ncb3385

35. Zhang H., Bosch-Marce M., Shimoda L.A., Tan Y.S, Baek J.H., Wesley J.B., Gonzalez F.J., Semenza G.L. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–10903. DOI: 10.1074/jbc.M800102200

36. Esteban-Martínez L., Sierra-Filardi E., McGreal R.S., Salazar-Roa M., Mariño G., Seco E., Durand S., Enot D., Graña O., Malumbres M., Cvekl A., Cuervo A.M., Kroemer G., Boya P. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J. 2017 Jun 14;36(12):1688–1706. DOI: 10.15252/embj.201695916

37. Lathrop K.L., Steketee M.B. Mitochondrial dynamics in retinal ganglion cell axon regeneration and growth cone guidance. Journal of ocular biology. 2013;1(2):9.

38. Kisilevsky E., Freund P., Margolin E. Mitochondrial disorders and the eye. Surv Ophthalmol. 2020;65(3):294–311. DOI: 10.1016/j.survophthal.2019.11.001

39. King M.P., Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989;246(4929):500–503. DOI: 10.1126/science.2814477

40. Kirches E. LHON: Mitochondrial Mutations and More. Curr Genomics. 2011;12(1):44–54. DOI: 10.2174/138920211794520150

41. Ghelli A., Zanna C., Porcelli A.M., Schapira A.H., Martinuzzi A., Carelli V., Rugolo M. Leber’s hereditary optic neuropathy (LHON) pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial cells incubated with galactose medium. J Biol Chem. 2003;278(6):4145–4150. DOI: 10.1074/jbc.M210285200

42. Giordano C., Iommarini L., Giordano L., Maresca A., Pisano A., Valentino M.L., Caporali L., Liguori R., Deceglie S., Roberti M., Fanelli F. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy. Brain. 2014;137(Pt 2):335–353. DOI: 10.1093/brain/awt343

43. Zhang J., Ji Y., Lu Y., Fu R., Xu M., Liu X., Guan M.X.. Leber’s hereditary optic neuropathy (LHON)-associated ND5 12338T>C mutation altered the assembly and function of complex I, apoptosis and mitophagy. Hum Mol Genet. 2018;27(11):1999–2011. DOI: 10.1093/hmg/ddy107

44. Sharma L.K., Tiwari M., Rai N.K., Bai Y. Mitophagy activation repairs Leber’s hereditary optic neuropathy-associated mitochondrial dysfunction and improves cell survival. Human molecular genetics. 2019;28(3):422–433. DOI: 10.1093/hmg/ddy354

45. Kodroń A., Hajieva P., Kulicka A., Paterczyk B., Jankauskaite E., Bartnik E. Analysis of BNIP3 and BNIP3L/Nix expression in cybrid cell lines harboring two LHONassociated mutations. Acta Biochim Pol. 2019;66(4):427–435. DOI: 10.18388/abp.2019_2837

46. Dai Y., Zheng K., Clark J., Swerdlow R.H., Pulst S.M., Sutton J.P., Shinobu L.A., Simon D.K.. Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation. Hum Mol Genet. 2014;23(3):637–647. DOI: 10.1093/hmg/ddt450

47. Hoekstra R.F. Evolutionary origin and consequences of uniparental mitochondrial inheritance. Human Reproduction. 2000;15 Suppl. 2:102–111. DOI: 10.1093/humrep/15.suppl_2.102

48. Wei Y., Huang J. Role of estrogen and its receptors mediated-autophagy in cell fate and human diseases. J Steroid Biochem Mol Biol. 2019;191:105–380. DOI: 10.1016/j.jsbmb.2019.105380

49. Pisano A., Preziuso C., Iommarini L., Perli E., Grazioli P., Campese A.F., Maresca A., Montopoli M., Masuelli L., Sadun A.A., d’Amati G., Carelli V., Ghelli A., Giordano C. Targeting estrogen receptor β as preventive therapeutic strategy for Leber›s hereditary optic neuropathy. Hum Mol Genet. 2015;24(24):6921–6931. DOI: 10.1093/hmg/ddv396

50. Djajadikerta A., Keshri S., Pavel M., Prestil R., Ryan L., Rubinsztein D.C. Autophagy Induction as a Therapeutic Strategy for Neurodegenerative Diseases. J Mol Biol. 2020;432(8):2799–2821. DOI: 10.1016/j.jmb.2019.12.035

51. Pupyshev A.B., Korolenko T.A., Tikhonova M.A. A Therapeutic Target for Inhibition of Neurodegeneration: Autophagy. Neuroscience and Behavioral Physiology = Zhurnal vysshej nervnoj deyatel’nosti. 2016;66(5): 515–554 (In Russ.). DOI: 10.1007/s11055-017-0519-7

52. Yu A.K., Datta S., McMackin M.Z., Cortopassi G.A. Rescue of cell death and inflammation of a mouse model of complex 1-mediated vision loss by repurposed drug molecules. Hum Mol Genet. 2017;26(24):4929–4936. DOI: 10.1093/hmg/ddx373

53. Johnson S.C., Yanos M.E., Kayser E.B., Quintana A., Sangesland M., Castanza A., Uhde L., Hui J., Wall V.Z., Gagnidze A., Oh K., Wasko B.M., Ramos F.J., Palmiter R.D., Rabinovitch P.S., Morgan P.G., Sedensky M.M., Kaeberlein M. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524–1528. DOI: 10.1126/science.1244360

54. Rodríguez-Navarro J.A., Rodríguez L., Casarejos M.J., Solano R. M., Gómez A., Perucho J., Cuervo A.M., García de Yébenes J., Mena M.A. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiology of disease. 2010;39(3), 423–438. DOI: 10.1016/j.nbd.2010.05.014

55. Pupyshev A.B., Tikhonova M.A., Akopyan A.A., Tenditnik M.V., Dubrovina N.I., Korolenko T.A.. Therapeutic activation of autophagy by combined treatment with rapamycin and trehalose in a mouse MPTP-induced model of Parkinson’s disease. Pharmacol Biochem Behav. 2019;177:1–11. DOI: 10.1016/j.pbb.2018.12.005

56. Chao de la Barca J.M., Simard G., Amati-Bonneau P., Safiedeen Z., Prunier-Mirebeau D., Chupin S., Gadras C., Tessier L., Gueguen N., Chevrollier A., DesquiretDumas V. The metabolomic signature of Leber’s hereditary optic neuropathy reveals endoplasmic reticulum stress. Brain. 2016;139(11):2864–2876. DOI: 10.1093/brain/aww222

57. Büttner S., Broeskamp F., Sommer C., Markaki M., Habernig L., Alavian-Ghavanini A., Carmona-Gutierrez D., Eisenberg T., Michael E., Kroemer G., Tavernarakis N., Sigrist S.J., Madeo F. Spermidine protects against α-synuclein neurotoxicity. Cell Cycle. 2014;13(24):3903–3908. DOI: 10.4161/15384101.2014.973309

58. Wei Q., Hu W., Lou Q., Yu J. NAD+ inhibits the metabolic reprogramming of RPE cells in early AMD by upregulating mitophagy. Discov Med. 2019;27(149):189–196.

59. Hou Y., Lautrup S., Cordonnier S., Wang Y., Croteau D.L., Zavala E., Zhang Y., Moritoh K., O’Connell J.F., Baptiste B.A., Stevnsner T.V., Mattson M.P., Bohr V.A. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci USA. 2018;115(8):E1876–E1885. DOI: 10.1073/pnas.1718819115


Review

For citations:


Andreeva N.A., Sheremet N.L., Murakhovskaya Yu.K., Dayal A.A., Minin A.A. The Role of Mitophagy in Hereditary Optic Neuropathies. Literature Review. Ophthalmology in Russia. 2021;18(3S):646-653. (In Russ.) https://doi.org/10.18008/1816-5095-2021-3S-646-653

Views: 964


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)