Influence of Orthokeratology Lenses on the Structure of the Eye
https://doi.org/10.18008/1816-5095-2021-3S-654-659
Abstract
This literature review describes the effect that orthokeratology lenses render on various eye’s structures. The use of these lenses, in addition to the expected changes can cause undesirable effects. The positive aspects include stopping or slowing the myopia’s progression, as well as a temporary improvement of uncorrected visual acuity by changing the shape of the anterior surface of the cornea. Undesirable moments are a change in the homeostasis of the tear film, epitheliopathy, the lens binding, in addition, there is the appearance of an iron arch, an increase in the visibility of fibrillary lines, a transient change in the biomechanical properties of the cornea. On the positive side, these changes do not affect visual function and eye health; moreover, they are reversible. At the same time, the terms of recovery of various structures of the eye can differ from several weeks to several months, depending on the duration of treatment and the target refraction. Thus, the use of orthokeratology lenses is a safe and effective method for correcting and “controlling” myopia.
About the Authors
I. A. BubnovaRussian Federation
Bubnova Irina A., MD, senior science researcher of the Optical media pathology department
Rossolimo str., 11A, В, Moscow, 119021
G. M. Musaeva
Russian Federation
Musaeva Guliya M., assistant of the Eye diseases department
Trubetskaya str., 8-2, Moscow, 119991
References
1. Cooper J., Tkatchenko A.V. A review of current concepts of the etiology and treatment of myopia. Eye contact lens. 2018;44(4):231. DOI: 10.1097/ICL.0000000000000499
2. Kong Q.H., Du X.Y., Li X., Wu Z.Z., Lin Z.L. Effects of orthokeratology on biological parameters and visual quality of adolescents with low-grade corneal astigmatism myopia. European Review for Medical Pharmacological Sciences. 2020;24(23):12009–12015. DOI: 10.26355/eurrev_202012_23989
3. Morgan I.G., He M., Rose K.A. Epidemic of pathologic myopia: what can laboratory studies and epidemiology tell us? Retina. 2017;37(5):989–997. DOI: 10.1097/IAE.0000000000001272
4. Jung S.K., Lee J.H., Kakizaki H., Jee D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Investigative ophthalmology visual science. 2012;53(9):5579–5583. DOI: 10.1167/iovs.12-10106
5. Lee Y.Y., Lo C.T., Sheu S.J., Lin J.L. What factors are associated with myopia in young adults? A survey study in Taiwan Military Conscripts. Investigative ophthalmology visual science. 2013;54(2):1026–1033. DOI: 10.1167/iovs.12-10480
6. Sun J., Zhou J., Zhao P., Lian J., Zhu H., Zhou Y. High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai. Investigative ophthalmology visual science. 2012;53(12):7504–7509. DOI: 10.1167/iovs.11-8343
7. Walline J.J., Jones L.A., Sinnott L.T. Corneal reshaping and myopia progression. British Journal of Ophthalmology. 2009;93(9):1181–1185. DOI: 10.1136/bjo.2008.151365
8. Holden B.A., Fricke T.R., Wilson D.A., Jong M., Naidoo K.S., Sankaridurg P. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. DOI: 10.1016/j.ophtha.2016.01.006
9. Ikuno Y. Overview of the complications of high myopia. Retina. 2017;37(12):2347–2351. DOI: 10.1097/IAE.0000000000001489
10. Tarutta E.P. Federal clinical guidelines “Diagnosis and treatment of myopia in children”. Russian pediatric ophthalmology = Rossiiskaya pediatricheskaya oftal’mologiya. 2014;(2):49–62 (In Russ.).
11. Miao C.X., Xu X.Y., Zhang H. Analysis of corneal complications in children wearing orthokeratology lenses at night. Chinese journal of ophthalmology. 2017;53(3):198–202. DOI: 10.3760/cma.j.issn.0412-4081.2017.03.010
12. Na K.S., Yoo Y.S., Hwang H.S., Mok J.W., Kim H.S., Joo C.K. The influence of overnight orthokeratology on ocular surface and meibomian glands in children and adolescents. Eye contact lens. 2016;42(1):68–73. DOI: 10.1097/ICL.0000000000000196
13. Nichols J.J., Mitchell G.L., King-Smith P.E. Mechanisms of precorneal and prelens tear film thinning. The Ocular Surface. 2005;3:S96.
14. Bubnova I.A., Egorova G.B. Ocular surface changes in long-term soft contact lens wearing. Treatment approach. Russian Medical Journal. Clinical Ophthalmology = Rossiyskiy medicinskiy zhurnal. Klinicheskaya oftal’mologiya. 2019;19(1):32–36 (In Russ.). DOI: 10.21689/2311-7729-201919-1-32-36
15. Yang L., Zhang L., Hu R.J., Yu P.P., Jin X. The influence of overnight orthokeratology on ocular surface and dry eye-related cytokines IL-17A, IL-6, and PGE2 in children. Contact Lens Anterior Eye. 2021;44(1):81–88. DOI: 10.1016/j.clae.2020.04.001
16. Carracedo G., González-Méijome J.M., Pintor J. Changes in diadenosine polyphosphates during alignment-fit and orthokeratology rigid gas permeable lens wear. Investigative ophthalmology visual science. 2012;53(8):4426–4432. DOI: 10.1167/iovs.11-9342
17. Li J., Dong P., Liu H. Effect of overnight wear orthokeratology lenses on corneal shape and tears. Eye contact lens. 2018;44(5):304–307. DOI: 10.1097/ICL.0000000000000357
18. Itoh R., Yokoi N., Kinoshita S. Tear film instability induced by rigid contact lenses. Cornea. 1999;18(4):440–443. DOI: 10.1097/00003226-199907000-00009
19. Borisov D.A., Saidasheva E.I., Dautova Z.A., Fomina N.V., Buyanovskaya S.V. Оcular Surface in Long Terms of Ortokeratology Lenses’s Use in Adolescents with Myopia. Оphthalmology in Russia = Oftal’mologiya. 2020;17(2):223–228 (In Russ.). DOI: 10.18008/1816-5095-2020-2-223-228
20. Liu R., Rong B., Tu P., Tang Y., Song W., Toyos R. Analysis of cytokine levels in tears and clinical correlations after intense pulsed light treating meibomian gland dysfunction. American journal of ophthalmology. 2017;183:81–90. DOI: 10.1016/j.ajo.2017.08.021
21. Kang M.H., Kim M.K., Lee H.J., Lee H.I., Wee W.R., Lee J.H. Interleukin-17 in various ocular surface inflammatory diseases. Journal of Korean medical science. 2011;26(7):938.
22. Alharbi A., Swarbrick H.A. The effects of overnight orthokeratology lens wear on corneal thickness. Investigative ophthalmology visual science. 2003;44(6):2518–2523. DOI: 10.1167/iovs.02-0680
23. Milash S.V., Tarutta E.P. Changes of corneal epithelial thickness before and after OK-correction according to SDOCT. Russian ophthalmological journal = Rossiyskiy oftal’mologicheskiy zhurnal. 2017;10(3):49–54 (In Russ.).
24. Cheah P.S., Norhani M., Bariah M.A., Myint M., Lye M.S., Azian A.L. Histomorphometric profile of the corneal response to short-term reverse-geometry orthokeratology lens wear in primate corneas: a pilot study. Cornea. 2008;27(4):461–470. DOI: 10.1097/ICO.0b013e318165642c
25. Zhang J., Li J., Li X., Li F., Wang T. Redistribution of the corneal epithelium after overnight wear of orthokeratology contact lenses for myopia reduction. Contact Lens Anterior Eye. 2020;43(3):232–237. DOI: 10.1016/j.clae.2020.02.015
26. Ezhova E.A.e., Balalin S.V. Morphometric cornea indices analysis at patients with myopia while using orthokeratology lenses. Tambov University Reports = Vestnik Tambovskogo Universiteta. 2016;21(4):1535–1538. (In Russ.). DOI: 10.20310/1810-0198-2016-21-4-1535-1540
27. Tarutta E.P., Verzhanskaya T.Yu., Toloraya R.R., Manukyan I.V. The influence of orthokeratologic (OK) lens wear on the corneal status: confocal microscopy scanning data. Russian ophthalmological journal = Rossiyskiy oftal’mologicheskiy zhurnal. 2010;3(3):37–42 (In Russ.).
28. Chan B., Cho P., Cheung S.W. Orthokeratology practice in children in a university clinic in Hong Kong. Clinical Experimental Optometry. 2008;91(5):453–460. DOI: 10.1111/j.1444-0938.2008.00259.x
29. Liu Y.M., Xie P. The safety of orthokeratology — a systematic review. Eye Contact Lens. 2016;42(1):35. DOI: 10.1097/ICL.0000000000000219
30. Alyaeva O.O., Ryabenko O.I., Tananakina E.M., Yushkova I.S. Corneal epithelial thickness and its clinical significance in myopic patients wearing orthokeratology lenses. Modern optometry = Sovremennaya optometriya. 2018;2:24–30 (In Russ.).
31. Zhabina O.A. Possible adverse effects of the use of orthokeratology lenses (literature review). The Eye Glaz 2020;22(2):26–29 (In Russ.). DOI: 10.33791/2222-44082020-2-26-29
32. Cho P., Cheung S., Mountford J., Chui W. Incidence of corneal pigmented arc and factors associated with its appearance in orthokeratology. Ophthalmic Physiological Optics. 2005;25(6):478–484. DOI: 10.1111/j.1475-1313.2005.00312.x
33. Charm J., Cho P. High myopia–partial reduction ortho-k: a 2-year randomized study. Optometry Vision Science. 2013;90(6):530–539. DOI: 10.1097/OPX.0b013e318293657d
34. Liang J.B., Chou P.I., Wu R., Lee Y.M. Corneal iron ring associated with orthokeratology. Journal of Cataract Refractive Surgery. 2003;29(3):624–626. DOI: 10.1016/s0886-3350(02)01458-x
35. Cho P., Chui W.S., Mountford J., Cheung S.W. Corneal iron ring associated with orthokeratology lens wear. Optometry vision science. 2002;79(9):565–568. DOI: 10.1097/00006324-200209000-00007
36. Liu C., Lee J., Sun C., Lin K., Hou C., Yeung L. Correlation between pigmented arc and epithelial thickness (COPE) study in orthokeratology-treated patients using OCT measurements. Eye. 2020;34(2):352–359. DOI: 10.1038/s41433-019-0542-8
37. Huang P.W., Yeung L., Sun C.C., Chen H.M., Peng S.Y., Chen Y.T.. Correlation of corneal pigmented arc with wide epithelial thickness map in orthokeratologytreated children using optical coherence tomography measurements. Contact Lens Anterior Eye. 2020;43(3):238–243. DOI: 10.1016/j.clae.2020.02.004
38. Lum E., Swarbrick H. Fibrillary lines in overnight orthokeratology. Clinical Experimental Optometry. 2007;90(4):299–302. DOI: 10.1111/j.1444-0938.2007.00124.x
39. Yeh T.N., Green H.M., Zhou Y., Pitts J., Kitamata-Wong B., Lee S. Short-term effects of overnight orthokeratology on corneal epithelial permeability and biomechanical properties. Investigative ophthalmology visual science. 2013;54(6):3902–3911. DOI: 10.1167/iovs.13-11874
40. González-Méijome J.M., Villa-Collar C., Queirós A., Jorge J., Parafita M.A.J.C. Pilot study on the influence of corneal biomechanical properties over the short term in response to corneal refractive therapy for myopia. Cornea. 2008;27(4):421–426. DOI: 10.1097/ICO.0b013e318164e49d.
41. Nieto-Bona A., González-Mesa A., Villa-Collar C., Lorente-Velázquez A. Biomechanical properties in corneal refractive therapy during adaptation period and after treatment interruption: a pilot study. Journal of Optometry. 2012;5(4):164–170.
42. Chen D., Lam A.K., Cho P.J.O., Optics P. A pilot study on the corneal biomechanical changes in short-term orthokeratology. 2009;29(4):464–471.
43. Lam A.K., Leung S.Y., Hon Y., Shu-Ho L., Wong K.-y., Tiu P.-k. Influence of shortterm orthokeratology to corneal tangent modulus: a randomized study. Current eye research. 2018;43(4):474–481. DOI: 10.1080/02713683.2017.1418895
44. Chen R., Mao X., Jiang J., Shen M., Lian Y., Zhang B. The relationship between corneal biomechanics and anterior segment parameters in the early stage of orthokeratology: A pilot study. Medicine (Baltimore). 2017 May; 96(19): e6907. DOI: 10.1097/MD.0000000000006907
45. Lam A.K., Hon Y., Leung S.Y., Shu-Ho L., Chong J., Lam D.C. Association between long-term orthokeratology responses and corneal biomechanics. Scientific reports. 2019;9(1):1–9. DOI: 10.1038/s41598-019-49041-z
46. Mao X., Huang C., Chen L., Lü F. A study on the effect of the corneal biomechanical properties undergoing overnight orthokeratology. Chinese journal of ophthalmology. 2010;46(3):209–213.
47. Wong Y.Z., Lam A.K.C. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Current eye research. 2015;40(3):282–289. DOI: 10.3109/02713683.2014.922193
48. Yanai R., Ishida Y., Sagara T., Suzuki K., Chikama T., Nishida T. Underestimation of Intraocular Pressure After Orthokeratology. Investigative Ophthalmology Visual Science. 2010;51(13):1533.
49. Chang C.J., Yang H.H., Chang C.A., Wu R., Tsai H.Y., editors. The influence of orthokeratology on intraocular pressure measurements. Seminars in ophthalmology; 2013: Taylor & Francis.
50. Tarutta E.P., Milash S.V., Markosyan G.A., Tarasova N.A. Choroid and optical defocus. Annals of Ophthalmology = Vestnik oftal’mologii. 2020;136(4):124–129 (In Russ.). DOI: 10.17116/oftalma2020136041124
51. Nickla D.L., Wallman J. The multifunctional choroid. Progress in retinal eye research. 2010;29(2):144–168. DOI: 10.1016/j.preteyeres.2009.12.002
52. Chen Z., Xue F., Zhou J., Qu X., Zhou X. Effects of orthokeratology on choroidal thickness and axial length. Optometry Vision Science. 2016;93(9):1064–1071. DOI: 10.1097/OPX.0000000000000894
53. Hung L.F., Wallman J., Smith E.L. Vision-dependent changes in the choroidal thickness of macaque monkeys. Investigative ophthalmology visual science. 2000;41(6):1259–1269.
54. Troilo D., Nickla D.L., Wildsoet C.F. Choroidal thickness changes during altered eye growth and refractive state in a primate. Investigative ophthalmology visual science. 2000;41(6):1249–1258.
55. Gardner D.J., Walline J.J., Mutti D.O. Choroidal thickness and peripheral myopic defocus during orthokeratology. Optometry Vision Science. 2015;92(5):579–588. DOI: 10.1097/OPX.0000000000000573
56. Li Z., Cui D., Hu Y., Ao S., Zeng J., Yang X. Choroidal thickness and axial length changes in myopic children treated with orthokeratology. Contact Lens Anterior Eye. 2017;40(6):417–423. DOI: 10.1016/j.clae.2017.09.010
Review
For citations:
Bubnova I.A., Musaeva G.M. Influence of Orthokeratology Lenses on the Structure of the Eye. Ophthalmology in Russia. 2021;18(3S):654-659. (In Russ.) https://doi.org/10.18008/1816-5095-2021-3S-654-659