Non-Modifiable Risk Factors for Cataract Genesis
https://doi.org/10.18008/1816-5095-2021-3S-666-672
Abstract
The review reflects the current data on unmodified risk factors for cataract development; most prominent are genetic factors and age. Research shows that about half of nuclear and two-thirds of cortical cataracts can be hereditary. Congenital cataracts are hereditary in 25 % of cases, of which 75 % are autosomal dominant. From 30 % to 50 % of congenital cataracts are caused by mutations in genes encoding proteins in the structure of the lens. To date, 115 genes have been identified associated with syndromic and non-syndromic cataracts. Proof of the genetic theory is the development of nuclear cataract in Stickler syndrome (SS), a relatively rare multisystem connective tissue disease inherited in an autosomal dominant manner. The syndrome is characterized by structural abnormalities in collagens of types 2, 9 and 11 and manifests itself in various clinical signs, including the development of facial skeleton anomalies, damage to the vision organ, the musculoskeletal system and the auditory system. Ophthalmic complications of SS are represented by a combination of pathological myopia, retinal detachment, ocular hypertension, early vitreous liquefaction and premature cataract development. Age is the main unmodified risk factor for developing cataracts. The most common form of cataract is age-related nuclear cataract, which in developing countries accounts for 50 % to 90 % of the total number of cases (> 70 versus ≤ 65 years, OR = 12.7). The pathogenesis of age-related nuclear cataract is associated with oxidative damage to proteins under certain conditions: a decrease in the concentration of glutathione (GSH) and vitamin C in the lens nucleus. When examining the frequency of cortical cataract, there was also a relationship with an increase in the age of patients (> 70 years versus ≤ 65 years, OR = 5.96). With age, a barrier is created for the advancement of GSH from the site of its synthesis and regeneration in the cortical layer of the lens towards the nucleus. Numerous experimental and morphological studies confirm the accommodative theory of the development of age-related cortical cataract.
Lens deformations caused by accommodation forces lead to heterogeneity of the lens density at the border of the nucleus and cortical layers, an increase in light scattering and damage to the lens fibers. Genetic predisposition and age are interactions of many complex factors that can contribute to the development of cataracts.
About the Authors
Yusef Naim YusefRussian Federation
Yusef Naim Yusef, MD, director, head of the Modern Treatment Methods in Ophthalmology Department
Rossolimo str., 11А, B, Moscow, 119021
I. V. Andreeva
Russian Federation
Andreeva Irina V., PhD, senior research officer
Rossolimo str., 11А, B, Moscow, 119021
Y. M. Al-Mahdar
Russian Federation
Al-Mahdar Yamen M., postgraduate
Rossolimo str., 11А, B, Moscow, 119021
References
1. Burton M.J., Ramke J., Marques A.P. The Lancet Global Health Commission on Global Eye Health: vision beyond 2020. Lancet Glob Health. 2021 Apr;9(4):e489–e551. DOI: 10.1016/S2214-109X(20)30488-5
2. Salm M., Belsky D., Sloan F.A. Trends in cost of major eye diseases to Medicare, 1991 to 2000. Am J Ophthalmol. 2006 Dec;142(6):976–982. DOI: 10.1016/j.ajo.2006.07.057. Epub 2006 Sep 7.
3. Krumpaszky H.G., Lüdtke R., Mickler A. Blindness incidence in Germany. A population-based study from Württemberg-Hohenzollern. Ophthalmologica. 1999;213(3):176–182. DOI: 10.1159/000027415
4. Blum M., Kloos C., Müller N. Prevalence of diabetic retinopathy. Check-up program of a public health insurance company in Germany 2002-2004. Ophthalmologe. 2007 Jun;104(6):499–500, 502–504. German. DOI: 10.1007/s00347-007-1522-0
5. Cedrone C., Culasso F., Cesareo M. Prevalence and incidence of age-related cataract in a population sample from Priverno, Italy. Ophthalmic Epidemiol. 1999 Jun;6(2):95–103. DOI: 10.1076/opep.6.2.95.1562
6. Kocur I., Resnikoff S. Visual impairment and blindness in Europe and their prevention. Br J Ophthalmol. 2002 Jul;86(7):716–722. DOI: 10.1136/bjo.86.7.716
7. Prokofyeva E., Wegener A., Zrenner E. Cataract prevalence and prevention in Europe: a literature review. Acta Ophthalmol. 2013 Aug;91(5):395–405. DOI: 10.1111/j.1755-3768.2012.02444.x
8. Age-Related Eye Disease Study Research Group. Risk factors associated with agerelated nuclear and cortical cataract: a case-control study in the Age-Related Eye Disease Study, AREDS Report No. 5. Ophthalmology. 2001 Aug;108(8):1400–1408. DOI: 10.1016/s0161-6420(01)00626-1
9. Hammond C.J., Duncan D.D., Snieder H., de Lange M., West S.K., Spector T.D., Gilbert C.E. The heritability of age-related cortical cataract: the twin eye study. Invest Ophthalmol Vis Sci. 2001 Mar;42(3):601–605.
10. Heiba I.M., Elston R.C., Klein B.E. Genetic etiology of nuclear cataract: evidence for a major gene. Am J Med Genet. 1993 Dec 1;47(8):1208–1214. DOI: 10.1002/ajmg.1320470816
11. McCarty C.A., Mukesh B.N., Fu C.L., Taylor H.R. The epidemiology of cataract in Australia. Am J Ophthalmol. 1999 Oct;128(4):446–465. DOI: 10.1016/s00029394(99)00218-4.
12. Tătaru C.I., Tătaru C.P., Costache A. Congenital cataract — clinical and morphological aspects. Rom J Morphol Embryol. 2020;61(1):105–112. DOI: 10.47162/RJME.61.1.11
13. Berry V., Georgiou M., Fujinami K. Inherited cataracts: molecular genetics, clinical features, disease mechanisms and novel therapeutic approaches. Br J Ophthalmol. 2020 Oct;104(10):1331–1337. DOI: 10.1136/bjophthalmol-2019-315282
14. Medsinge A., Nischal K.K. Pediatric cataract: challenges and future directions. Clin Ophthalmol. 2015 Jan 7;9:77–90. DOI: 10.2147/OPTH.S59009
15. Antunes R.B., Alonso N., Paula R.G. Importance of early diagnosis of Stickler syndrome in newborns. J Plast Reconstr Aesthet Surg. 2012 Aug;65(8):1029–1034. DOI: 10.1016/j.bjps.2012.02.017
16. Boothe M., Morris R., Robin N. Stickler Syndrome: A Review of Clinical Manifestations and the Genetics Evaluation. J Pers Med. 2020 Aug 27;10(3):105. DOI: 10.3390/jpm10030105
17. Ettl A., Fischer-Klein C., Chemelli A. Proton relaxation times of the vitreous body in hereditary vitreoretinal dystrophy. Ophthalmologica. 1994;208(4):195–197. DOI: 10.1159/000310486
18. Seery C.M., Pruett R.C., Liberfarb R.M. Distinctive cataract in the Stickler syndrome. Am J Ophthalmol. 1990 Aug 15;110(2):143–148. DOI: 10.1016/s0002-9394(14)76982-x
19. World Health Organisation Blindness and Vision Impairment Prevention accessed on 15 September 2020.
20. Hu D., Xie F., Xiao Y. Metformin: A Potential Candidate for Targeting Aging Mechanisms. Aging Dis. 2021 Apr 1;12(2):480–493. DOI: 10.14336/AD.2020.0702
21. Cheng R., Lin B., Lee K.W. Similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid-modified calf lens proteins: evidence for ascorbic acid glycation during cataract formation. Biochim Biophys Acta. 2001 Jul 27;1537(1):14–26. DOI: 10.1016/s0925-4439(01)00051-5
22. Spector A., Roy D. Disulfide-linked high molecular weight protein associated with human cataract. Proc Natl Acad Sci USA. 1978 Jul;75(7):3244–3248. DOI: 10.1073/pnas.75.7.3244
23. Lou M.F. Redox regulation in the lens. Prog Retin Eye Res. 2003 Sep;22(5):657–682. DOI: 10.1016/s1350-9462(03)00050-8
24. Truscott R.J. Age-related nuclear cataract-oxidation is the key. Exp Eye Res. 2005 May;80(5):709–725. DOI: 10.1016/j.exer.2004.12.007
25. Siegfried C.J., Shui Y.B. Intraocular Oxygen and Antioxidant Status: New Insights on the Effect of Vitrectomy and Glaucoma Pathogenesis. Am J Ophthalmol. 2019 Jul;203:12–25. DOI: 10.1016/j.ajo.2019.02.008
26. Senthilkumari S., Talwar B., Dharmalingam K. Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbate concentrations in an ascorbate depleted setting. Exp Eye Res. 2014 Jul;124:24–30. DOI: 10.1016/j.exer.2014.04.022
27. Taylor A., Jacques P.F., Nowell T. Vitamin C in human and guinea pig aqueous, lens and plasma in relation to intake. Curr Eye Res. 1997 Sep;16(9):857–864. DOI: 10.1076/ceyr.16.9.857.5039. PMID: 9288446
28. Reddy V.N. Glutathione and its function in the lens--an overview. Exp Eye Res. 1990 Jun;50(6):771–778. DOI: 10.1016/0014-4835(90)90127-g
29. Tessier F., Moreaux V., Birlouez-Aragon I. Decrease in vitamin C concentration in human lenses during cataract progression. Int J Vitam Nutr Res. 1998;68(5):309–315.
30. Braakhuis A.J., Donaldson C.I., Lim J.C. Nutritional Strategies to Prevent Lens Cataract: Current Status and Future Strategies. Nutrients. 2019 May 27;11(5):1186. DOI: 10.3390/nu11051186
31. Sella R., Afshari N.A. Nutritional effect on age-related cataract formation and progression. Curr Opin Ophthalmol. 2019 Jan;30(1):63–69. DOI: 10.1097/ICU.0000000000000537
32. Sweeney M.H., Truscott R.J. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. Exp Eye Res. 1998 Nov;67(5):587–595. DOI: 10.1006/exer.1998.0549
33. Schoen W. Die geschichtliche Entwicklung unserer Kenntnis der Staarkrankheit — Antritts-Vorlesung am 26. Oktober 1896 — Universität Leipzig. Leipzig: Verlag von Alfred Langkammer; 1897.
34. Fisher R.F. Human lens fibre transparency and mechanical stress. Exp Eye Res. 1973 Jun;16(1):41–49. DOI: 10.1016/0014-4835(73)90235-2
35. Pau H. Cortical and subcapsular cataracts: significance of physical forces. Ophthalmologica. 2006;220(1):1–5. DOI: 10.1159/000089267. PMID: 16374041
36. Angra S.K., Adhikari K.P., Dada V.K. Refractive error stress in the etiology of senile cataract. Indian J Ophthalmol. 1986 Jan-Feb;34(1):1–5.
37. Fujisawa K., Sasaki K. Changes in light scattering intensity of the transparent lenses of subjects selected from population-based surveys depending on age: analysis through Scheimpflug images. Ophthalmic Res. 1995 Mar-Apr;27(2):89–101. DOI: 10.1159/000267604.
38. Belaidi A., Pierscionek B.K. Modeling internal stress distributions in the human lens: can opponent theories coexist? J Vis. 2007 Aug 3;7(11):1.1–12. DOI: 10.1167/7.11.1
39. Wang K., Venetsanos D., Wang J. Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress. Sci Rep. 2016 Aug 10;6:31171. DOI: 10.1038/srep31171
40. Michael R., Pareja-Aricò L., Rauscher F.G. Cortical Cataract and Refractive Error. Ophthalmic Res. 2019;62(3):157–165. DOI: 10.1159/000496865
41. Fisher R.F. The force of contraction of the human ciliary muscle during accommodation. J Physiol. 1977 Aug;270(1):51–74. DOI: 10.1113/jphysiol.1977.sp011938
42. Pierscionek B.K. In vitro alteration of human lens curvatures by radial stretching. Exp Eye Res. 1993 Nov;57(5):629–635. DOI: 10.1006/exer.1993.1168
43. Glasser A., Campbell M.C. Presbyopia and the optical changes in the human crystalline lens with age. Vision Res. 1998 Jan;38(2):209–229. DOI: 10.1016/s00426989(97)00102-8
44. Koopmans S.A., Terwee T., Barkhof J. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes. Invest Ophthalmol Vis Sci. 2003 Jan;44(1):250–257. DOI: 10.1167/iovs.02-0256
45. Augusteyn R.C., Mohamed A., Nankivil D. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccomodation. Vision Res. 2011 Jul 15;51(14):1667–1678. DOI: 10.1016/j.visres.2011.05.009
46. Weeber H.A., Eckert G., Pechhold W., van der Heijde R.G. Stiffness gradient in the crystalline lens. Graefes Arch Clin Exp Ophthalmol. 2007 Sep;245(9):1357–1366. DOI: 10.1007/s00417-007-0537-1
47. Wilde G.S., Burd H.J., Judge S.J. Shear modulus data for the human lens determined from a spinning lens test. Exp Eye Res. 2012 Apr;97(1):36–48. DOI: 10.1016/j.exer.2012.01.011
48. Vrensen G.F. Early cortical lens opacities: a short overview. Acta Ophthalmol. 2009 Sep;87(6):602–610. DOI: 10.1111/j.1755-3768.2009.01674.x
49. Fisher R.F. Senile cataract. A comparative study between lens fibre stress and cuneiform opacity formation. Trans Ophthalmol Soc U K. 1970;90:93–109
50. Beebe D.C. The physiology and pathobiology of the lens. In: McManus LM, Mitchell RN, eds. Pathobiology of Human Disease. Cambridge, MA: Academic Press; 2014:2072–2083.
51. Pinilla Cortés L., Burd H.J., Montenegro G.A. Experimental protocols for ex vivo lens stretching tests to investigate the biomechanics of the human accommodation apparatus. Invest Ophthalmol Vis Sci. 2015 May;56(5):2926–2932. DOI: 10.1167/iovs.14-15744.
52. Michael R., D’Antin J.C., Pinilla Cortés L. Deformations and Ruptures in Human Lenses With Cortical Cataract Subjected to Ex Vivo Simulated Accommodation. Invest Ophthalmol Vis Sci. 2021 Jan 4;62(1):12. DOI: 10.1167/iovs.62.1.12
53. Taylor V.L., al-Ghoul K.J., Lane C.W. Morphology of the normal human lens. Invest Ophthalmol Vis Sci. 1996 Jun;37(7):1396–1410.
54. Garland D.L., Duglas-Tabor Y., Jimenez-Asensio J. The nucleus of the human lens: demonstration of a highly characteristic protein pattern by two-dimensional electrophoresis and introduction of a new method of lens dissection. Exp Eye Res. 1996 Mar;62(3):285–291. DOI: 10.1006/exer.1996.0034
55. Augusteyn R.C. On the growth and internal structure of the human lens. Exp Eye Res. 2010 Jun;90(6):643–654. DOI: 10.1016/j.exer.2010.01.013
56. Sparrow J.M., Bron A.J., Brown N.A., Ayliffe W., Hill A.R. The Oxford Clinical Cataract Classification and Grading System. Int Ophthalmol. 1986 Dec;9(4):207–225. DOI: 10.1007/BF00137534
Review
For citations:
Yusef Yu., Andreeva I.V., Al-Mahdar Y.M. Non-Modifiable Risk Factors for Cataract Genesis. Ophthalmology in Russia. 2021;18(3S):666-672. (In Russ.) https://doi.org/10.18008/1816-5095-2021-3S-666-672