Preview

Ophthalmology in Russia

Advanced search

Modern Ultrasound Methods of Studying the Biomechanical Properties of the Lens. Review

https://doi.org/10.18008/1816-5095-2021-3S-688-694

Abstract

Cataract is one of the most common diseases in ophthalmology nowadays, ranks first in the world among the causes of reversible blindness and remains a multifactorial disease, involving complex interactions between metabolic disorders, genetic predisposition and environmental risk factors. Studying the properties of the lens is important in “cataract” surgery from a clinical perspective. Determination of the mechanical hardness of the lens is particularly important to optimize the amount of ultrasonic energy expended during phacoemulsification in order to minimize the number of complications, however, the existing methods are rather subjective and based mainly on biomicroscopy with visual assessment. Ultrasound constitutes a significant part of the methods of studying the lens. There are methods for determining the density of the lens using A-scan (one-dimensional image) and B-scan (two-dimensional image). Basically, these techniques provide information on acoustic density, but not on mechanical hardness. Several studies have used a high frequency needle tranducer to determine the hardness of the lens. The authors believe that the combination of an ultrasound needle tranducer and a phacoemulcification probe for real-time feedback may provide better surgical efficiency. Ultrasound elastography, static and dynamic is used to assess the elastic properties of tissues in many areas of medicine. In ophthalmology, elastography is not used in general clinical practice, however, the density of the lens is assessed in vivo using compression elastography in some studies. Also, a number of researchers offer combined system of ultrasound elastography and OCT, called OCTelastography. It is assumed that OCT elastography can provide better spatial image resolution and faster acquisition rates. The literature review reveals summarized data on methods of studying the lens, its acoustic and mechanical density, using various ultrasound research techniques, including such poorly understood methods in ophthalmology as compression elastography and optical coherent elastography.

About the Authors

E. D. Sakalova
Research Institute of Eye Diseases
Russian Federation

Sakalova Ekaterina D., research assistant of the Retina and optic nerve pathology department

Rossolimo str., 11A, B, Moscow, 119021



I. V. Andreeva
Research Institute of Eye Diseases
Russian Federation

Andreeva Irina V., senior research assistant of the Retina and optic nerve pathology department

Rossolimo str., 11A, B, Moscow, 119021



Y. M. Al-Mahdar
Research Institute of Eye Diseases
Russian Federation

Al-Mahdar Yamen M., postgraduate of the Retina and optic nerve pathology department

Rossolimo str., 11A, B, Moscow, 119021



References

1. Flaxman S.R., Bourne R.R.A., Resnikoff S., Ackland P.Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–e1234. DOI: 10.1016/S2214-109X (17) 30393-5

2. Wride M.A. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc Lond B Biol Sci. 2011;366(1568):1219–1233. DOI: 10.1098/rstb.2010.0324

3. Shiels A., Hejtmancik J.F. Molecular Genetics of Cataract. Prog Mol Biol Transl Sci. 2015;134:203–218. DOI: 10.1016/bs.pmbts.2015.05.004

4. Chang D., Zhang X., Rong S., Sha Q. Serum antioxidative enzymes levels and oxidative stress products in age-related cataract patients. Oxid Med Cell Longev. 2013;2013:587826. DOI: 10.1155/2013/587826

5. Kumarasamy A., Jeyarajan S., Cheon J., Premceski A. Peptide-induced formation of protein aggregates and amyloid fibrils in human and guinea pig αA-crystallins under physiological conditions of temperature and pH. Exp Eye Res. 2019;179:193–205. DOI: 10.1016/j.exer.2018.11.016

6. Koroleva I.A., Egorov A.E. Lens metabolism: features and ways of correction. Russian Medical Journal. Clinical Ophthalmology = Rossiyskiy medicinskiy zhurnal. Klinicheskaya oftal’mologiya. 2015;15(4):191–195 (in Russ.).

7. Shukhaev S.V., Yeltsina O.M, Balashevich L.I. Comparison of ultrasound and hydrodynamic parameters in phacoemulsification. Annals of Ophthalmology = Vestnik oftal’mologii. 2018;134(6):33–40 (In Russ). DO: 10.17116/oftalma201813406133

8. Clover J. Slit-Lamp Biomicroscopy. Cornea. 2018;37:Suppl 1:S5–S6. DOI: 10.1097/ICO.0000000000001641

9. Martin R. Cornea and anterior eye assessment with slit lamp biomicroscopy, specular microscopy, confocal microscopy, and ultrasound biomicroscopy. Indian J Ophthalmol. 2018;66(2):195–201. DOI: 10.4103/ijo.IJO_649_17

10. Kercheval D.B., Terry J.E. Essentials of slit lamp biomicroscopy. J Am Optom Assoc. 1977;48(11):1383–1389.

11. Painter R. Slit lamp photography: The basics. J Vis Commun Med. 2015;38(1–2):119–123. DOI: 10.3109/17453054.2015.1039502

12. Lewis-Younger R.L., Mamalis N., Eger M.J. Lens opacification detected by slit lamp biomicroscopy are associated with exposure to organic nitrate explosives. Arch. Ophthalmol. 2000;118(12):1653–1659 DOI: 10.1001/archopht.118.12.1653

13. Cyilack L.T., Ransil B.J., White O. Classification of human senile cataract change by the American Cooperative Cataract Research Group (CCRG). Method III. The association on nuclear color (sclerosis) with extend of cataract formation, age and visual acuity. Invest. Ophthalmol. 1984.25(2):174–180.

14. Matsuoka R., Watanabe M., Ueno H. A study of coloring in human lens nucleus — association of four inorganic elements and dielectric behavior with nuclear color. Nippon Ganka Gakkai Zasshi. 1997;101:359–365.

15. Qian W., Soderberg P., Chen E. Universal opacity standart for Scheimpflug photography. Ophthalmol. Res. 2000;32(3):292–298. DOI: 10.1159/000055628

16. Dzhashi B.G. Balalin S.V. Serkov Yu.S. To the question of the density of the lens. Modern technologies in ophthalmology = Sovremennyye tekhnologii v oftal’mologii. 2019;5:24–27 (In Russ.). DOI: 10.25276/2312-4911-2019-5-24-27

17. Sacamoto Y., Sasaki H., Nacamura Y. Reproducibility of data obtained by a newly developed anterior eye segment analysis system EAS-1000. Ophthalmol. Res. 1992;24:10–20. DOI: 10.1159/000267202

18. Wegener A., Laser H. Image analysis and Scheimpflug photography of anterior segment of the eye — a review. Klin. Monatsbl. Augenheilkd. 2001;218(2):67–77. DOI: 10.1055/s-2001-12248

19. Pei X., Bao Y., Chen X. Correlation of lens density measured using the Pentacam Scheimpflug system with the LOCS III grading score and visual acuity in agerelated nuclear cataract. Brit. J. Ophthalmol. 2008;92:1471–1475. DOI: 10.1136/bjo.2007.136978

20. Bayrak G., Özdamar Erol Y., Kazanci B. An objective evaluation of crystalline lens density using Scheimpflug lens densitometry in different uveitis entities. Int Ophthalmol. 2020;40(8):2031–2040. DOI: 10.1007/s10792-020-01379-4

21. Rabsilber T.M., Khoramnia R., Auffarth G.U. Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J. Cataract Refractive Surg. 2006;32(5):456–459. DOI: 10.1016/j.jcrs.2005.12.103

22. Rufer F., Schroder A., Arvani M-K. Zentrale und periphere Hornhautpachymetrie — Normevaluation mit dem Pentacam-System. Klin. Monatsbl. Augenheilkd. 2005;222(2):117–122. DOI: 10.1055/s-2005-857908

23. Ossoinig K.C. Standardized echography: basic principles, clinical applications, and results. Int Ophthalmol Clin. 1979;19(4):127–210.

24. Avetisov K.S., Novikov I.A., Siplivy V.I., Markosyan A.G. Test device for estimation of viscoelactic properties of biological tussues. Annals of Ophthalmology = Vestnik oftal’mologii. 2011;127(2):56–58 (In Russ.).

25. Avetisov K.S., Markosian A.G. Estimation of age-related features of acoustic density and biometric relations of lens based on combined ultrasound scanning. Annals of Ophthalmology = Vestnik oftal’mologii. 2013;129(3):16–23 (In Russ.).

26. Van den Berg T.J., Coppens J.C. Conversion of lens slit lamp photographs into physical light-scattering units. Invest. Ophthalmol. Vis. Sci. 1999;(9):2151–2157.

27. Krasnov M.M., Makarov I.A., Yusef S.N. Densitometric analysis of the lens nucleus in the choice of a strategy for surgical treatment of cataract. Annals of Ophthalmology =Vestnik oftal’mologii. 2000;116(4):6–8 (In Russ.).

28. Tsaousis K.T., Lamprogiannis L.P., Dimitrakos S.A., Tsinopoulos I.T. Preoperative evaluation of human crystalline lens hardness using A-scan ultrasound biometry: a pilot study. Int J Ophthalmol. 2016;9(10):1521–1523. DOI: 10.18240/ijo.2016.10.25

29. Sugiura T., Kurosaks D., Uezuki Y., Eguchi S., Obata H., Takahashi T. Creating cataract in pig eye. J Cataract Refract Surg. 1999;25:615–621. DOI: 10.1016/s08863350(99)00002-4.

30. Tsui P.H., Chang C.C. Imaging local scatterer concentrations by the Nakagami statistical model. Ultrasound Med Biol. 2007;33:608–619. DOI: 10.1016/j.ultrasmedbio.2006.10.005

31. Po-Hsiang Tsui, Chih-Chung Huang, Qifa Zhou, Kirk Shung. Cataract measurement by estimating the ultrasonic statistical parameter using an ultrasound needle transducer: an in vitro study. Physiol Meas. 2011;32(5):513–522. DOI: 10.1088/0967-3334/32/5/002

32. Tsui P.H., Huang C.C., Chang C.C., Wang S.H., Shung K.K. Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro. Phys Med Biol. 2007;52:6413–6425. DOI: 10.1088/0031-9155/52/21/005

33. Chih-Chung Huang, Ruimin Chen, Po-Hsiang Tsui, Qifa Zhou, Humayun M.S. Shung K.K. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer. Phys Med Biol. 2009;54(19):5981–5994. DOI: 10.1088/0031-9155/54/19/021

34. Garra B.S. Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q. 2007;23:255–268. DOI: 10.1097/ruq.0b013e31815b7ed6

35. Hall T.J. AAPM/RSNA physics tutorial for residents: topics in US: beyond the basics: elasticity imaging with US. Radiographics. 2003;23(6):1657–1671. DOI: 10.1148/rg.236035163

36. Ophir J., Céspedes I., Ponnekanti H., Yazdi Y., Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging . 1991;13(2):111–134. DOI: 10.1177/016173469101300201

37. Gennisson J.L., Deffieux T., Fink M., Tanter M. Ultrasound elastography: principles and techniques. Diagnostic and interventional imaging. 2013;94:487–495. DOI: 10.1016/j.diii.2013.01.022

38. Sporea I. Clinical elastography. Med Ultrason. 2018;20(3):263–264. DOI: 10.11152/mu-1693

39. Ozturk A., Grajo J.R., Dhyani M., Anthony B.W., Samir A.E. Principles of ultrasound elastography. Abdom Radiol (NY). 2018;43(4):773–785. DOI: 10.1007/s00261-018-1475-6

40. Zhou H.Y., Yan W.J., Yan H. Q-Elastosonography of lens: a new quantitative measurement for human lens sclerosis in vivo. International Conference on the Lens. 2014;1:19–24.

41. Hai-Yan Zhou, Hong Yan, Wei-Jia Yan, Xin-Chuan Wang, Qiao-Ying L. Noninvasive stiffness assessment of the human lens nucleus in patients with anisometropia using an ultrasound elastography system. Int J Ophthalmol. 2020;13(3):399–405. DOI: 10.18240/ijo.2020.03.05

42. Sarvazyan A., Hall T.J., Urban M.U., Fatemi M., Aglyamov S.R., Garra B.S. An overview of elastography-an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7(4):255–282. DOI: 10.2174/157340511798038684

43. Adie S.G., Kennedy B.F., Armstrong J.J. Audio frequency in vivo optical coherence elastography. Phys Med Biol. 2009 May 21;54(10):3129–3139. DOI: 10.1088/00319155/54/10/011.

44. Kennedy B.F., Kennedy K.M., Sampson D.D. A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J Sel Top Quantum Electron. 2014;20(2):272–288 DOI: 10.1109/JSTQE.2013.2291445

45. Kennedy B.F., Liang X., Adie S.G. In vivo three-dimensional optical coherence elastography. Opt Express. 2011;19(7):6623–6634. DOI: 10.1364/OE.19.006623

46. Qi W., Chen R., Chou L. Phase-resolved acoustic radiation force optical coherence elastography. J Biomed Opt. 2012;17(11):110505. DOI: 10.1117/1.JBO.17.11.110505

47. Wang S., Larin K.V. Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt Lett. 2014;39:41–44. DOI: 10.1364%2FOL.39.000041

48. Sun C., Standish B., Yang V.X. Optical coherence elastography: current status and future applications. J Biomed Opt. 2011 Apr;16(4):043001. DOI:10.1117/1.3560294

49. Wu C., Han Z., Wang S. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system. Invest Ophthalmol Vis Sci. 2015;56(2):1292–1300. DOI: 10.1167/iovs.1415654

50. Buckhurst H., Gilmartin B., Cubbidge R.P., Nagra M., Logan N.S. Ocular biometric correlates of ciliary muscle thickness in human myopia. Ophthalmic Physiol Opt. 2013;33(3):294–304. DOI: 10.1111/opo.12039

51. Duck F.A. Medical and non-medical protection standards for ultrasound and infrasound. Prog Biophys Mol Biol.2007;93(1–3):176–191. DOI: 10.1016/j.pbiomolbio.2006.07.008


Review

For citations:


Sakalova E.D., Andreeva I.V., Al-Mahdar Y.M. Modern Ultrasound Methods of Studying the Biomechanical Properties of the Lens. Review. Ophthalmology in Russia. 2021;18(3S):688-694. (In Russ.) https://doi.org/10.18008/1816-5095-2021-3S-688-694

Views: 629


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)