Preview

Ophthalmology in Russia

Advanced search

Intraocular Lens Optic Power Calculation on “Short” Eyes. A Review

https://doi.org/10.18008/1816-5095-2022-2-272-279

Abstract

In recent years, due to advances in surgical technique, instruments and design of intraocular lenses (IOLs), patient expectations of cataract surgery have increased significantly, often matching those after refractive interventions. A number of factors affect postoperative visual acuity, including the presence of concomitant pathology in patients, the experience of the surgeon, the choice of IOL model and other factors. In the presence of “short” eyes, with an axial length of less than 22 mm, the formulas available in the arsenal for calculating the optical power of the IOL are less accurate than for eyes with normal sizes, which is of great difficulty for the surgeon. The most important factors include the choice of model and calculation of IOL optic power associated in case of failure with patient dissatisfaction with the treatment. The review discusses the definitions of the concepts of hyperopia, microphthalmos and nanophthalmos. The sources of errors are presented when choosing a formula for calculating the IOL optic power, including the use of various instruments for measuring axial length and other parameters of the eye. The necessity of optimizing the IOL constants for “short” eyes is given. The effectiveness of the main currently used formulas is considered, including Hoffer Q, Haigis, Holladay 1, Holladay 2, SRK / T, Barrett Universal, Super Formula, Olsen, T2, Hill-RBF, Kane. Progress in lens disease surgery does not stand still and is aimed at improving diagnostic equipment and standardizing and synchronizing various types of biometers, increasing the number of variables in formulas for calculating the IOL optic power, further standardizing diopter power in the manufacturing of IOLs, and the need to develop a unified formula for calculating optical power Artificial Intelligence IOL with the possibility of its constant access to a huge array of preoperative research data manhole and postoperative assessment of results. Management of patients with an axial length of less than 22.00 mm remains a challenge for ophthalmic surgeons, given the difficulties encountered in choosing an IOL and the complications of surgery. The available formulas for calculating the IOL optic powerneed to be adjusted for this group of patients. 

About the Authors

K. B. Pershin
“Eximer” Eye Center; Academy of postgraduate education of The Federal Medical-Biological Agency
Russian Federation

MD, Professor, medical director,

Marksistskaya str. 3/1, Moscow, 109147;

Volokolamskoe highway, 91, Moscow, 125371



N. F. Pashinova
“Eximer” Eye Center; Academy of postgraduate education of The Federal Medical-Biological Agency
Russian Federation

MD, head doctor,

Marksistskaya str. 3/1, Moscow, 109147;

Volokolamskoe highway, 91, Moscow, 125371c



I. A. Likh
“Eximer” Eye Center
Russian Federation

ophthalmologist,

Family Shamshinikh str., 58, Novosibirsk, 630005



A. Yu. Tsygankov
“Eximer” Eye Center
Russian Federation

PhD, scientific advisor,

Marksistskaya str. 3/1, Moscow, 109147



References

1. Hoffer K.J. The Hoffer Q formula: a comparison of theoretic and regression formulas.J Cataract Refract Surg. 1993;19(6):700–712.

2. Olsen T., Thim K., Corydon L. Accuracy of the newer generation intraocular lens power calculation formulas in long and short eyes. J Cataract Refract Surg. 1991;17(2):187–193. DOI: 10.1016/s0886-3350(13)80249-0

3. Steijns D., Bijlsma W.R., Van der Lelij A. Cataract surgery in patients with nanophthalmos. Ophthalmology. 2013;120(2):266–270. DOI: 10.1016/j.ophtha.2012.07.082

4. Jung K.I., Yang J.W., Lee Y.C., Kim S.Y. Cataract surgery in eyes with nanophthalmos and relative anterior microphthalmos. Am J Ophthalmol. 2012;153(6):1161– 1168.e1. DOI: 10.1016/j.ajo.2011.12.006

5. Auffarth G.U., Blum M., Faller U., Tetz M.R., Völcker H.E. Relative anterior microphthalmos; morphometric analysis and its implications for cataract surgery. Ophthalmology. 2000;107(8):1555–1560. DOI: 10.1016/s0161-6420(00)00240-2

6. Khairallah M., Messaoud R., Zaouali S., Ben Yahia S., Ladjimi A., Jenzri S. Posterior segment changes associated with posterior microphthalmos. Ophthalmology. 2002;109(3):569–574. DOI: 10.1016/s0161-6420(01)00996-4

7. Tahchidi H.P., Antonova E.G., Mitronina M.L., Potapova L.S. The accommodative function of the children`s eyes with the hyperopic refraction, complicated by the astenopia. Annals of Orenburg State University = Vestnik Orenburgskogo gosudarstvennogo universiteta. 2011;14(133):359–362 (In Russ.)].

8. Foster P.J., Broadway D.C., Hayat S., Luben R., Dalzell N., Bingham S., Wareham N.J., Khaw K.T. Refractive error, axial length and anterior chamber depth of the eye in British adults: the EPIC-Norfolk Eye Study. Br J Ophthalmol. 2010;94(7):827–830. DOI: 10.1136/bjo.2009.163899

9. Yuzbasioglu E., Artunay O., Agachan A., Bilen H. Phacoemulsification in patients with nanophthalmos. Can J Ophthalmol. 2009;44(5):534–539. DOI: 10.3129/i09-142

10. Relhan N., Jalali S., Pehre N., Rao H.L., Manusani U., Bodduluri L. High-hyperopia database, part I: clinical characterisation including morphometric (biometric) differentiation of posterior microphthalmos from nanophthalmos. Eye (Lond). 2016;30(1):120–126. DOI: 10.1038/eye.2015.206

11. Nihalani B.R., Jani U.D., Vasavada A.R., Auffarth G.U. Cataract surgery in relative anterior microphthalmos. Ophthalmology. 2005;112(8):1360–1367. DOI: 10.1016/j. ophtha.2005.02.027

12. Wolfram C., Höhn R., Kottler U., Wild P., Blettner M., Bühren J., Pfeiffer N., Mirshahi A. Prevalence of refractive errors in the European adult population: the Gutenberg Health Study (GHS). Br J Ophthalmol. 2014;98(7):857–861. DOI: 10.1136/bjophthalmol-2013-304228

13. Williams K.M., Verhoeven V.J., Cumberland P., Bertelsen G., Wolfram C., Buitendijk G.H., Hofman A., van Duijn C.M., Vingerling J.R., Kuijpers R.W., Höhn R., Mirshahi A., Khawaja A.P., Luben R.N., Erke M.G., von Hanno T., Mahroo O., Hogg R., Gieger C., Cougnard-Grégoire A., Anastasopoulos E., Bron A., Dartigues J.F., Korobelnik J.F., Creuzot-Garcher C., Topouzis F., Delcourt C., Rahi J., Meitinger T., Fletcher A., Foster P.J., Pfeiffer N., Klaver C.C., Hammond C.J. Prevalence of refractive error in Europe: the European Eye Epidemiology (E3 ) Consortium. Eur J Epidemiol. 2015;30(4):305–315. DOI: 10.1007/s10654-015-0010-0

14. Hashemi H., Fotouhi A., Yekta A., Pakzad R., Ostadimoghaddam H., Khabazkhoob M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J CurrOphthalmol. 2017;30(1):3–22. DOI: 10.1016/j.joco.2017.08.009

15. Day A.C., Khawaja A.P., Peto T., Hayat S., Luben R., Broadway D.C., Khaw K.T., Foster P.J. The small eye phenotype in the EPIC-Norfolk eye study: prevalence and visual impairment in microphthalmos and nanophthalmos. BMJ Open. 201324;3(7). PII: e003280. DOI: 10.1136/bmjopen-2013-003280

16. Carifi G., Safa F., Aiello F., Baumann C., Maurino V. Cataract surgery in small adult eyes. Br J Ophthalmol. 2014;98(9):1261–1265. DOI: 10.1136/bjophthalmol-2013-304579

17. Hu Z., Yu C., Li J., Wang Y., Liu D., Xiang X., Su W., Pan Q., Xie L., Xia K.A novel locus for congenital simple microphthalmia family mapping to 17p12-q12. Invest Ophthalmol Vis Sci. 2011;52(6):3425–3429. DOI: 10.1167/iovs.10-6747

18. Roberts T.V., Hodge C., Sutton G., Lawless M. Comparison of Hill-radial basis function, Barrett Universal and current third generation formulas for the calculation of intraocular lens power during cataract surgery. Clin Exp Ophthalmol. 2018;46(3):240–246. DOI: 10.1111/ceo.13034

19. Melles R.B., Holladay J.T., Chang W.J. Accuracy of intraocular lens calculation formulas. Ophthalmology. 2018;125(2):169–178. DOI: 10.1016/j.ophtha.2017.08.027 20. Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85(5):472–485. DOI: 10.1111/j.1600-0420.2007.00879.x

20. Kane J.X., Van Heerden A., Atik A., Petsoglou C. Intraocular lens power formula accuracy: Comparison of 7 formulas. J Cataract Refract Surg. 2016;42(10):1490–1500. DOI: 10.1016/j.jcrs.2016.07.021

21. Ladas J.G., Siddiqui A.A., Devgan U., Jun A.S. A 3-D “Super Surface” Combining Modern Intraocular Lens Formulas to Generate a “Super Formula” and Maximize Accuracy. JAMA Ophthalmol. 2015;133(12):1431–1436. DOI: 10.1001/jamaophthalmol.2015.3832

22. Cooke D.L., Cooke T.L. Comparison of 9 intraocular lens power calculation formulas. J Cataract Refract Surg. 2016;42(8):1157–1164. DOI: 10.1016/j.jcrs.2016.06.029

23. Kane J.X., Van Heerden A., Atik A., Petsoglou C. Accuracy of 3 new methods for intraocular lens power selection. J Cataract Refract Surg. 2017;43(3):333–339. DOI: 10.1016/j.jcrs.2016.12.021

24. Abulafia A., Barrett G.D., Rotenberg M., Kleinmann G., Levy A., Reitblat O., Koch D.D., Wang L., Assia E.I. Intraocular lens power calculation for eyes with an axial length greater than 26.0 mm: Comparison of formulas and methods. J Cataract Refract Surg. 2015;41(3):548–556. DOI: 10.1016/j.jcrs.2014.06.033

25. Pershin K.B., Pashinova N.F., Tsygankov A. Yu., Legkih S.L. Iol optic power calculation in patients with eye axial length 24–28 mm without preceding refractive surgery. Оphthalmology in Russia = Oftal’mologiya. 2016;13(2):89–96 (In Russ.). DOI: 10.18008/1816-5095-2016-2-89-96

26. Pershin K.B., Pashinova N.F., Tsygankov A.Yu., Legkih S.L. Phacoemulsification with IOL implantation in extremely high myopia. Cataract and refractive surgery = Kataraktal’naya i refraktsionnaya khirurgiya. 2015;15(3):14–21 (In Russ.).

27. Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 2008;34(3):368–376. DOI: 10.1016/j.jcrs.2007.10.031

28. Olsen T. Improved accuracy of intraocular lens power calculation with the Zeiss IOL Master. Acta Ophthalmol Scand. 2007;85(1):84–87. DOI: 10.1111/j.16000420.2006.00774.x

29. Holladay J.T., Gills J.P., Leidlein J., Cherchio M. Achieving emmetropia in extremely short eyes with two piggyback posterior chamber intraocular lenses. Ophthalmology. 1996;103(7):1118–1123. DOI: 10.1016/s0161-6420(96)30558-7

30. Shrivastava A.K., Behera P., Kacher R., Kumar B. Effect of anterior chamber depth on predictive accuracy of seven intraocular lens formulas in eyes with axial length less than 22 mm. Clin Ophthalmol. 2019;13:1579–1586. DOI: 10.2147/OPTH.S217932

31. Aristodemou P., Sparrow J.M., Kaye S. Evaluating Refractive Outcomes after Cataract Surgery. Ophthalmology. 2019;126(1):13–18. DOI: 10.1016/j.ophtha.2018.07.009

32. Shuhaev S.V., Matveeva A.V., Kirillova O.V., Zagorul’ko A.M. Comparative evaluation of target refraction between three monofocal flexible intraocular lenses. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya. 2018;1:53–58 (In Russ.). DOI: 10.25276/02354160-2018-1-53-58

33. Retzlaff J., Prust J. Practical consideration of intraocular lens implant power calculations. Semin Ophthalmol. 1992;7(4):269–278. DOI: 10.3109/08820539209065115

34. Hoffer K.J. Origin of Multiple Formula Use to Calculate Intraocular Lens Power. JAMA Ophthalmol. 2016;134(7):847–848. DOI: 10.1001/jamaophthalmol.2016.1043

35. Aristodemou P., Knox Cartwright N.E., Sparrow J.M., Johnston R.L. Intraocular lens formula constant optimization and partial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery. J Cataract Refract Surg. 2011;37(1):50–62. DOI: 10.1016/j.jcrs.2010.07.037

36. Haigis W. Challenges and approaches in modern biometry and IOL calculation. Saudi J Ophthalmol. 2012;26(1):7–12. DOI: 10.1016/j.sjopt.2011.11.007

37. Charalampidou S., Cassidy L., Ng E., Loughman J., Nolan J., Stack J., Beatty S. Effect on refractive outcomes after cataract surgery of intraocular lens constant personalization using the Haigis formula. J Cataract RefractSurg. 2010;36(7):1081–1089. DOI: 10.1016/j.jcrs.2009.12.050

38. Terzi E., Wang L., Kohnen T. Accuracy of modern intraocular lens power calculation formulas in refractive lens exchange for high myopia and high hyperopia. J Cataract Refract Surg. 2009;35(7):1181–1189. DOI: 10.1016/j.jcrs.2009.02.026

39. Bat’kov E.N., Pashtaev N.P., Mihajlova V.I. Calculation of intraocular lens power in surgical treatment of extreme hyperopia. Annals of Ophthalmology = Vestnik oftal’mologii. 2019;135(1):21–27 (In Russ.). DOI: 10.17116/oftalma201913501121

40. Pershin K.B., Pashinova N.F., Tsygankov A.Yu., Legkih S.L., Lih I.A. Biometry in lOL power calculations as a factor of successive cataract surgery. Cataract and refractive surgery = Kataraktal’naya i refraktsionnaya khirurgiya. 2016;16(2):15–22 (In Russ.).

41. Hoffer K.J., Savini G. IOL Power Calculation in Short and Long Eyes. AsiaPac J Ophthalmol (Phila). 2017;6(4):330–331. DOI: 10.22608/APO.2017338

42. Samadony M.A.H., Tarek A.H., Hany A.R., Mohamed M. Comparison of predictability of intraocular lens power calculation formulas for axial hyperopic patients undergoing cataract surgery using intraocular lens master. Egyptian Journal of Cataract and Refractive Surgery. 2017;23(2):49–53. DOI: 10.4103/JCRS.JCRS_11_17

43. Jusef Yu.N., Kas’janov A.A., Jusef S.N., Ivanov M.N., Shevelev A.Yu., Shashorina S.A. The specific features of calculation of the focal power of intraocular lenses in microophthalmos. Annals of Ophthalmology = Vestnik oftal’mologii . 2006;122(5):38–39 (In Russ.).

44. Day A.C., Foster P.J., Stevens J.D. Accuracy of intraocular lens power calculations in eyes with axial length


Review

For citations:


Pershin K.B., Pashinova N.F., Likh I.A., Tsygankov A.Yu. Intraocular Lens Optic Power Calculation on “Short” Eyes. A Review. Ophthalmology in Russia. 2022;19(2):272-279. (In Russ.) https://doi.org/10.18008/1816-5095-2022-2-272-279

Views: 824


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)