Preview

Ophthalmology in Russia

Advanced search

Laboratory Analysis of the Anti-Infectious Activity of Quantum Dots and Bioconjugates Based on Them against a Potential Eye Pseudomonas Aeruginosa Infection. Experimental Research (Part 4)

https://doi.org/10.18008/1816-5095-2022-2-429-433

Abstract

This article is a continuation of a series of publications on the results of an experimental study on the possibilities of using quantum dots, as well as bioconjugates based on them as a promising treatment for inflammatory diseases of the eye. Of the whole variety of microorganisms, Pseudomonas aeruginosa (Pa) is the most formidable pathogen, leading to pronounced, sometimes fatal, changes throughout the body in general, and in the eye in particular, in connection with which it receives close attention from bacteriologists and specialists dealing with the treatment of pathologies caused by this microorganism. Now, the search for effective methods to combat this pathogen is one of the priorities of world health care.

This article presents an analysis of the anti-infectious activity of bioconjugates based on quantum dots KTCdTe / CdMPA710 and KTInP / ZnSe / ZnS650 in synergy with III generation cephalosporin (Cefotaxin) against nosocomial Pa strains. Cultures of microorganisms, in the amount of 30 Petri dishes, were incubated in a thermostat at 350C for 18 hours (in the dark and under a source of photoexcitation). As a source of photoexcitation (the emission spectrum of the source corresponded to the absorption spectrum of QDs), we used an LED strip connected to an uninterruptible power supply battery placed in a thermostat. Evaluation of the effectiveness of the impact was carried out using the disk-diffusion method with the measurement of effective growth retardation zones (GRZ). According to the results of the study, it was revealed that the use of the obtained bioconjugate (QD + AB) significantly increases the ZZR. 

About the Authors

V. O. Ponomarev
Eye Microsurgery Ekaterinburg Center
Russian Federation

PhD, surgeon, head of Diagnostic department,

A. Bardina str., 4A, Ekaterinburg, 620149



V. N. Kazaykin
Eye Microsurgery Ekaterinburg Center
Russian Federation

MD, head of Vitreoretinal department,

A. Bardina str., 4A, Ekaterinburg, 620149



A. V. Lizunov
Eye Microsurgery Ekaterinburg Center
Russian Federation

ophthalmologist,

A. Bardina str., 4A, Ekaterinburg, 620149



S. M. Rozanova
Clinical and Diagnostic Center
Russian Federation

PhD in Biology, Associate Professor, head of the Laboratory,

8 Marta str., 78B, Ekaterinburg, 620144



M. V. Kirf
Clinical and Diagnostic Center
Russian Federation

bacteriologist,

8 Marta str., 78B, Ekaterinburg, 620144



K. A. Tkachenko
Eye Microsurgery Ekaterinburg Center
Russian Federation

ophthalmologist,

A. Bardina str., 4A, Ekaterinburg, 620149



References

1. Egorova O.N., Brusina E.B., Grigoriev E.V. Epidemiology and prevention of Pseudomonas aeruginosa. Federal clinical guidelines. Moscow, 2014. 82 p. (In Russ.).

2. Barry P., Cordoves L., Gardner S. ESCRS Guidelines for Prevention and Treatment of Endopthalmitis Following Cataract Surgery. Co Dublin: Temple House, Temple Road, Blackrock, 2013. P. 3–5.

3. Friling E., Lundström M., Stenevi U., Montan P. Six-year incidence of endophthalmitis after cataract surgery: Swedish national study. J Cataract Refract Surg. 2013;39:15–21. DOI: 10.1016/j.jcrs.2012.10.037

4. Eifrig C.W.G., Scott I.U., Miller D., Flynn H.W., Jr. Endophthalmitis caused by Pseudomonas aeruginosa. Ophthalmology. 2003;110(9):1714–1717. DOI: 10.1016/ S0161-6420(03)00572-4

5. Schimel A.M., Miller D., Flynn H.W., Jr. Endophthalmitis isolates and antibiotic susceptibilities: a 10-year review of culture-proven cases. Am J Ophthalmol. 2013;156(1):50–52.e1. DOI: 10.1016/j.ajo.2013.01.027

6. Falavarjani H.G., Alemzadeh S.A., Habibi A. Pseudomonas aeruginosa Endophthalmitis: Clinical Outcomes and Antibiotic Susceptibilities. Ocul Immunol Inflamm. 2017;25(3):377–381. DOI: 10.3109/09273948.2015.1132740

7. Sengillo J.D., Duker J., Hernandez M., Characterization of Pseudomonas aeruginosa isolates from patients with endophthalmitis using conventional microbiologic techniques and whole genome sequencing. J Ophthalmic Inflamm Infect. 2020;10:25. DOI: 10.1186/s12348-020-00216-0

8. Beyer P., Paulin S. Priority pathogens and the antibiotic pipeline: an update. Bull World Health Organ. 2020;98(3):151. DOI: 10.2471/BLT.20.251751

9. Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–937. DOI: 10.1126/science.271.5251.933

10. Weller H. Quantum size colloids: From size-dependent properties of discrete particles to self-organized superstructures. Curr. Opin. Colloid Interface Sci. 1998;3:194– 199. DOI: 10.1016/S1359-0294(98)80013-7

11. Weng J., Song X., Li L. Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging. Talanta. 2006;70:397– 402. DOI: 10.1016/j.talanta.2006.02.064

12. Sarwat S., Stapleton F., Willcox M. Quantum dots in Ophthalmology: A literature review. Current Eye Research. 2019;1037–1046. DOI: 10.1080/02713683.2019.1660793/

13. Courtney C.M., Goodman S.M., Nagy T.A., Levy M., Bhusal P., Madinger N.E. Potentiating antibiotics in drug-resistant clinical isolates via stimuliactivated superoxide generation. Sci. Adv. 2017;3(10):1–10. DOI: 10.1126/sciadv.170177

14. Courtney C.M., Goodman S.M., McDaniel J.A., Madinger N.E., Chatterjee A., Nagpal P. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 2016;15:529–534. DOI: 10.1038/nmat4542

15. Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V. Evaluation of the ophthalmotoxic effect of quantum dots and bioconjugates based on them in terms of the prospects for the treatment of resistant endophthalmitis. Experimental research (stage 1). Ophthalmology in Russia. 2021;18(3): 476–487 (In Russ.). DOI: 10.18008/1816-5095-2021-3-476-487

16. Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V. Evaluation of the ophthalmotoxic effect of quantum dots and bioconjugates based on them in terms of the prospects for the treatment of resistant endophthalmitis. Experimental research. Part 2. (stage 1). Ophthalmology in Russia. 2021;18(4): 876–884 (In Russ.). DOI: 10.18008/1816-5095-2021-4-876-884

17. Ponomarev V.O., Kazaikin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Rozanova S.M., Kyrf M.V. Laboratory analysis of the anti-infectious activity of quantum dots and bioconjugates based on them in terms of prospects for the treatment of inflammatory eye diseases. Experimental study (Part 3). Ophthalmology in Russia. 2022;19(1):188–194.) https://doi.org/10.18008/1816-5095-2022-1-188-194


Review

For citations:


Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Rozanova S.M., Kirf M.V., Tkachenko K.A. Laboratory Analysis of the Anti-Infectious Activity of Quantum Dots and Bioconjugates Based on Them against a Potential Eye Pseudomonas Aeruginosa Infection. Experimental Research (Part 4). Ophthalmology in Russia. 2022;19(2):429-433. (In Russ.) https://doi.org/10.18008/1816-5095-2022-2-429-433

Views: 344


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)