Preview

Ophthalmology in Russia

Advanced search

Evaluation of Blood Flow Parameters of the Macular Area and Optic Disc in Patients with Combination of Glaucoma and Axial Myopia

https://doi.org/10.18008/1816-5095-2022-3-638-646

Abstract

Purpose. To analyze the indicators of blood flow in the macular region and the peripapillary region in patients with a combination of glaucoma and axial myopia.

Patients and methods. The paper analyzes the results of a study of 186 patients (343 eyes): 51 patients (92 eyes) with axial myopia (mean AVR 26.3 ± 1.9 mm) and diagnosed with primary open-angle glaucoma of various stages (Glaucoma + Myopia group), 42 patients (78 eyes) with axial myopia (mean AVR 26.5 ± 1.8 mm) without other ophthalmopathology (Myopia group), 48 patients (86 eyes) with refraction close to emmetropic and primary open-angle glaucoma of various stages (Glaucoma group), 45 patients (87 eyes) without any ophthalmopathology and refraction close to emmetropic (Emmetropia group).

Results. With the development of glaucoma, a decrease in the density of capillary perfusion and the density of vessels of the superficial plexus in the macular region was revealed, with a predominant decrease in the parameter in the lower sector, with a progressive decrease with the glaucoma severity. More pronounced deviations from the indicators of the control groups were recorded in the group of combined glaucoma and axial myopia. In the peripapillary region of patients with glaucoma, a decrease in capillary perfusion density and capillary flow index in the upper and especially in the lower sector was recorded, with more pronounced changes in the combination of the disease with axial myopia.

Conclusion. The tomographic indicators of blood flow in the macular and peripapillary areas from this study can be used to obtain the most complete picture of the course of the glaucoma process in patients with different types of refraction, as well as for differential diagnosis and staging of glaucoma in high myopic eyes. 

About the Authors

E. N. Eskina
Academy of Postgraduate Education of Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of Federal Medical-Biological Agency; Ophthalmological Clinic “Sphere”
Russian Federation

MD, Professor of the Ophthalmology department, Volokolamskoe highway, 91, Moscow, 125371;

head of clinic, Starokachalovskaya str., 10, Moscow, 117628



A. V. Belogurova
Ophthalmological Clinic “Sphere”
Russian Federation

PhD, chief doctor,

Starokachalovskaya str., 10, Moscow, 117628



V. S. Zinina
Ophthalmological Clinic “Sphere”
Russian Federation

ophthalmologist,

Starokachalovskaya str., 10, Moscow, 117628



A. A. Gvetadze
Ophthalmological Clinic “Sphere”
Russian Federation

PhD, ophthalmologist,

Starokachalovskaya str., 10, Moscow, 117628



V. B. Smirnova-Sotmari
Ophthalmological Clinic “Sphere”
Russian Federation

nurse,

Starokachalovskaya str., 10, Moscow, 117628



References

1. Tham Y.C., Li X., Wong T.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and metaanalysis. Ophthalmology. 2014;121(11);2081–2090. DOI: 10.1016/j.ophtha.2014.05.013

2. Holden B.A., Fricke T.R., Wilson D.A. Global prevalence of myopia and high maopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5);1036– 1042. DOI: 10.1016/j.ophtha.2016.01.006

3. Jonas J.B., Weber P., Nagaoka N., OhnoMatsui K. Glaucoma in high myopia and parapapillary delta zone. PLoS One. 2017;12(4):e0175120. DOI: 10.1371/journal.pone.0175120/

4. Haarman A.E.G., Enthoven C.A., Tidelman J.W.L. The complications of myopia: a review and metaanalysis. Invest Ophthalmol Vis Sci. 2020;61(4):49. DOI: 10.1167/iovs.61.4.49

5. Miki A., Ikuno Y., Weinreb R.N. Measurements of the parapapillary atrophy zones in en face optical coherence tomography images. PLos One. 2017;12(4):e0175347. DOI: 10.1371/journal.pone.0175347

6. Jonas J.B., Weber P, Nagaoka N., OhnoMatsui K. Glaucoma in high myopia and parapapillary delta zone. PLoS One. 2017;12(4):e0175120. DOI: 10.1371/journal.pone.0175120

7. Kazakova A.V., Eskina E.N. Glaucoma diagnostics in axial myopia. Annals of Orenburg State University = Vestnik Orenburgskogo gosudarstvennogo universiteta. 2015;12(173):152–155 (In Russ.).

8. Kaza kova A.V., Eskina E.N. Glaucoma diagnostics in myopic patients. Russian journal of glaucoma = Natsional’nyi zhurnal glaukoma. 2015;14(3):87–100 (In Russ.).

9. Shpak A.A., Korobkova M.V. Optical coherence tomography in patients with refractive errors. Message 3: Thick ness of the retinal ganglion cell layer. Ophthalmosurgery = Oftal’mokhirurgiya.. 2018;2:58–62 (In Russ.).

10. Wang W.W., Wang H.Z., Liu J.R. Diagnostic ability of ganglion cell complex thickness to detect glaucoma in high myopia eyes by Fourier domain optical coherence tomography. Int J Ophthalmol. 2018;11(5):791–796. DOI: 10.18240/ijo.2018.05.12

11. Rolle T., Bonetti B, Mazzucco A, Dallorto L. Diagnostic ability og OCT parameters and retinal ganglion cells count in identification of glaucoma in myopic preperimetric eyes. BMC Ophthalmol. 2020;20(1):373. DOI: 10.1186/s12886020016165

12. Malakar M., Askari S.N., Ashraf H. Optical coherence tomography assisted retinal nerve fibre layer thickness profile in high myopia. J Clin Diagn Res. 2015;9(2):NC013. DOI: 10.7860/JCDR/2015/9054.5565

13. Singh D., Mishra S.K., Agarwal E. Assessment of Retinal Nerve Fiber Layer Changes by Cirrus Highdefinition Optical Coherence Tomography in Myopia. J Curr Glaucoma Pract. 2017;11(2):52–57. DOI: 10.5005/jpjournals100281223

14. Harb E., Hyman L., Gwiazda J. Choroidal thickness profiles in myopic eyes of young adults in the correction of myopia evaluation trial cohort. Am J Ophthalmol. 2015;160(1):62–71. DOI: 10.1016/j.ajo.2015.04.018

15. Kurysheva N.I., Ardzhevnishvili T.D., Kiseleva T.N., Fomin A.V. Choroid in glaucoma: results of an optical coherence tomography study. Glaucoma = Glaukoma. 2013;3:73–83 (In Russ.).

16. Kurysheva N.I., Ar dzhevnishvili T.D., Fomin A.V. The choroid and glaucoma. National Journal glaucoma = Natsional’nyi zhurnal glaukoma. 2014;13(1):60–67 (In Russ.).

17. Usui S., Ikuno Y., Miki A. Evaluation of the choroidal thickness using highpen etration optical coherence tomography with long wavelength in highly myopic normaltension glaucoma. Am J Ophthalmol. 2012; 153(1):106.e1. DOI: 10.1016/j.ajo.2011.05.037

18. Eskina E.N., Zykova A.V. Morphometric analysis of retinal and optic nerve parameters in patients with axial myopia. Russian pediatric ophthalmology= Rossiiskaya pediatricheskaya oftal’mologiya. 2014;1:21–24 (In Russ.).

19. Kurysheva N.I., Maslova E.V., Trubilina A.V. Features of macular blood flow in glaucoma. Annals of Ophthalmology = Vestnik oftal’mologii. 2017;2:29–37 (In Russ.). DOI: 10.17116/oftalma201713322937

20. Rao H.L., Pradhan Z.S., Suh M.H. Optical Coherence Tomography Angiography in Glaucoma. Glaucoma. 2020;29(4):312–321. DOI: 10.1097/IJG.0000000000001463

21. Kurysheva N.I., Maslova E.V., Trubilina A.V. Decreased peripapillary blood flow as a factor in the development and progression of primary openangle glaucoma. Russian ophthalmological journal = Rossiyskiy oftal’mologicheskiy zhurnal. 2016;9(3):34–41 (In Russ.). DOI: 10.21516/207200762016933441

22. Lee K., Maeng K.J., Kim J.Y. Diagnostic ability of vessel density measured by spectraldomain optical coherence tomography angiography for glaucoma in patients with high myopia. Sci Rep. 2020;10(1):3027. DOI: 10.1038/s41598020600510

23. Chang P.Y., Wang J.Y., Wang J.K. Optical coherence tomography angiography compared with optical coherence tomography for detection of early glaucoma with high myopia. Front Med (Lausanne). 2022;8:793786. DOI: 10.3389/fmed.2021.793786

24. National guidelines for glaucoma / Ed. prof. E.A. Egorova, prof. Yu.S. Astakhova, prof. V.P. Ericheva. Moscow: Geotar media, 2015. 456 p. (In Russ.).

25. Pechauer A.D., Jia Y., Liu L. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest. Ophthalmol. Vis. Sci. 2015;56(5):3287–3291. DOI: 10.1167/iovs.1516655

26. Liu L., Jia Y., Takusagawa H.L. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133:1045–1052. DOI: 10.1001/jamaophthalmol.2015.2225

27. Ucak T., Icel E., Yilmaz H. Alterations in optical coherence tomography angiogra phy findings in patients with high myopia. Eye (Lond.) 2020;34:1129–1135. DOI: 10.1038/s4143302008241

28. Yang Y., Wang J., Jiang H., Yang X., Feng L., Hu L., Wang L., Lü F., Shen M. Reti nal Microvasculature Alteration in High Myopia. Investig. Opthalmol. Vis. Sci. 2016;57:6020–6030. DOI: 10.1167/iovs.1619542

29. Milani P., Montesano G., Rossetti L., Bergamini F., Pece A. Vessel density, retinal thickness, and choriocapillaris vascular flow in myopic eyes on OCT angiography. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018;256:1419–1427. DOI: 10.1007/s004170184012y

30. Min C.H., AlQattan H.M., Lee J.Y., Kim J.G., Yoon Y.H., Kim Y.J. Macular Micro vasculature in High Myopia without Pathologic Changes: An Optical Coherence Tomography Angiography Study. Korean J. Ophthalmol. 2020;34:106–112. DOI: 10.3341/kjo.2019.0113

31. Zhu Q., Chen C., Yao J. Vessel Density and Retinal Thickness from Optical Coherence Tomography Angiography as New Indexes in Adolescent Myopia. J Ophthal mol. 2021:6069833. DOI: 10.1155/2021/6069833

32. Sung M.S., Lee T.H., Heo H., Park S.W. Clinical features of superficial and deep peripapillary microvascular density in healthy myopic eyes. PLoS ONE. 2017;12:e0187160. DOI: 10.1371/journal.pone.0187160

33. Rao H.L., Pradhan Z.S., Weinreb RN. Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary OpenAngle Glaucoma. Am J Ophthalmol 2016;171:75–83. DOI: 10.1016/j.ajo.2016.08.030

34. Rao H.L., Pradhan Z.S., Weinreb R.N. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS One 2017;12:e0173930. DOI: 10.1371/journal. pone.0173930

35. Takusagawa H.L., Liu L, Ma K.N. ProjectionResolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology 2017;124:1589–1599. DOI: 10.1016/j.ophtha.2017.06.002

36. Flammer J., Orgül S., Costa V.P. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002;21:359–393. DOI: 10.1016/S13509462(02)000083

37. Mansouri K. Optical coherence tomography angiography and glaucoma: Searching for the missing link. Expert Rev. Med. Devices. 2016;13:879–880. DOI: 10.1080/17434440.2016.1230014


Review

For citations:


Eskina E.N., Belogurova A.V., Zinina V.S., Gvetadze A.A., Smirnova-Sotmari V.B. Evaluation of Blood Flow Parameters of the Macular Area and Optic Disc in Patients with Combination of Glaucoma and Axial Myopia. Ophthalmology in Russia. 2022;19(3):638-646. (In Russ.) https://doi.org/10.18008/1816-5095-2022-3-638-646

Views: 573


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)