Preview

Ophthalmology in Russia

Advanced search

Study of the Phenotype of Endothelial Cells in the Vessels of Uveal Melanoma

https://doi.org/10.18008/1816-5095-2022-4-789-796

Abstract

In tumor angiogenesis, two main mechanisms are officially recognized. They are: the formation of vascular structures by associations of endothelial cell precursors (PEK) or angioblasts from circulating peripheral blood (1) and vascular co-optation (2) using preexistent vessels. Determining the dominant phenotype of endothelial cells (EC) involved in the neoangiogenesis of uveal melanoma (UM) is very important due to the different sensitivity of different EC to antiangiogenic therapy and their biological differences. Circulating hemangioblasts of bone marrow origin (synonym: endothelial cell precursors, PEC) involved in the formation of vessels in the tumor can also originate from hematopoietic stem cells and, in conditions of an excess of proangiogenic growth factors, undergo “reverse differentiation” or “dedifferentiation”. This situation is extremely dangerous due to changes in the biological properties of EC: the rate of proliferation increases and high resistance to any type of interventional antiangiogenic therapy, including targeted antiangiogenic drugs, develops. In combination with high resistance to radiation therapy and chemotherapy of tumor cells, such a tumor becomes uncontrollable and quickly leads to death... The purpose of this study: to identify the phenotype of endothelial cells involved in UM angiogenesis by immunohistochemical analysis. The authors conducted immunohistochemical studies on paraffin blocks (n = 98) of enucleated eyes with UM. One of the recommended PEC markers was used: a monoclonal antibody to the VEGFR2-KDR/Flk-1 receptor. It was found that the expression of the VEGFR- 2/Flk-KDR-1 receptor took place only in 22.1 % of the UM. The receptor was expressed exclusively by endothelial cells (EC) of tumor vessels and was not expressed by UM cells. There was no basic expression of the receptor (at stage T1). Peak expression was observed at stage T2. At the next stages of the oncological process, there was a decline in expression. The mean IHC gradation of expression intensity also decreased from stage T2 to stage T4. Flk-positive and negative endothelial cells differed in size, shape, nature of communication with the vascular wall and the presence or absence of a nucleus in the cell. The authors concluded that both mechanisms of angiogenesis take place in UM. A small percentage (22.1 %) Flk+endothelial cells indicate that the dominant mechanism of angiogenesis in UM is co-optation of vessels based on preexistent, and the dominant population of EC is Flk-negative EC.

About the Authors

V. G. Likhvantseva
A.I. Burnazyan Federal Biophysical Center of FMBA of Russia; Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of FMBA of Russia
Russian Federation

 MD, Professor, Department of ophthalmology 

 Gamalei str., 15, Moscow, 123098, Russian Federation 

 Volokolamskoe highway, 91, Moscow, 125371, Russian Federation 



O. A. Anurova
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Russian Federation

PhD, pathologist of the Pathology department No. 3 (oncopathology)

Academician Oparina str., 4, Moscow, 117997, Russian Federation 



S. E. Astakhova
Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of FMBA of Russia
Russian Federation

PhD, Department of ophthalmology

Volokolamskoe highway, 91, Moscow, 125371, Russian Federation 



M. V. Vereshchagina
Children’s City Polyclinic No. 15, Ambulatory аnd Polyclinic Center
Russian Federation

PhD, doctor

Koptevsky ave., 18/1, Moscow, 125239, Russian Federation 



V. E. Ovanesyan
Yegoryev Central District Hospital
Russian Federation

head of the Department of ophthalmology

Shchukova Mountain, 19, Yegoryevsk, Moscow Region, 140304, Russian Federation 



E. V. Stepanova
Research Institute of Experimental Diagnosis and Therapy of Tumors
Russian Federation

PhD, Professor, head of the Laboratory for the study of angiogenesis mechanisms

Kashirskoe highway, 23, Moscow, 115478, Russian Federation 



References

1. Svirin A.V., Kiiko Yu.I., Obruch B.V., Bogomolov A.V. Spectral optic coherent tomography: principles and possibilities (Literary review). Russian Medical Journal. Clinical Ophthalmology = Rossiyskiy medicinskiy zhurnal. Klinicheskaya oftal’mologiya. 2009;2:50–53 (In Russ.).

2. Duker J.S., Waheed N.K., Goldman D.R. Handbook of retinal OCT: optical coherence tomography. Philadelphia: WB Saunders; 2014.

3. Shields C.L., Sioufi K., Fuller T., Higgins T. Which tumor, what imaging modality. Retina Today.2016;08:57–64.

4. Neroev V.V., Sahakyan S.V., Myakoshina E.B. Optical coherence tomography angiography in the diagnosis of initial melanoma and delimited choroid hemangioma. Annales of Ophthalmology = Vestnik oftal’mologii. 2018;134(3):4–18 (In Russ.). DOI: 10.17116/oftalma201813434

5. Shields C.L., Say E.A., Samara W.A., Khoo C.T. Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: Comparison of irradiated versus nonirradiated eyes in 65 patients. Retina. 2016;36(8):1493–1505. DOI: 10.1097/IAE.0000000000001021

6. Ghassemi F., Mirshahi R., Fadakar K., Sabour S. Optical coherence tomography angiography in choroidal melanoma and nevus. Clinical ophthalmology (Auckland, NZ). 2018;12:207. DOI: 10.2147/OPTH.S148897

7. Pellegrini M., Corvi F., Invernizzi A., Ravera V. Swept source optical coherence tomography angiography in choroidal melanoma: an analysis of 22 consecutive cases. Retina. 2019;39(8):1510–1519. DOI: 10.1097/IAE.0000000000002205

8. Asahara T. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science. 1997;275(5302):964–966. DOI: 10.1126/science.275.5302.964

9. Holash J., Maisonpierre P., Compton D. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. Washington DC. 1999;284:1994–1998.

10. Gille H., Kowalski J., Li B., LeCouter J., Moffat B., Zioncheck T.F. Analysis of biological effects and signaling properties of Flt 1 (VEGFR 1) and KDR (VEGFR 2): a reassessment using novel receptor specific vascular endothelial growth factor mutants. J. Biol. Chem. 2001;276:3222–3230. DOI: 10.1074/jbc.M002016200

11. Jin K.L., Mao X.O., Greenberg D.A. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc. Natl. Acad. Sci. USA. 2000;97:10242–10247. DOI: 10.1073/pnas.97.18.10242

12. Omolara O., Ogunshola O. O., Antic A., Donoghue M. J., Fan S. Y., Kim H. Paracrine and autocrine functions of neuronal VEGF in the CNS. J. Biol. Chem. 2002;277:11410–11415. DOI: 10.1074/jbc.M111085200

13. Loges S Identification of the Adult Hemangioblast. Stem Cells and Development journal. 2004;13(1):229–242.DOI: 10.1089/154732804323099163.

14. Van Limbergen E.J., Zabrocki P., Porcu M. FLT1 kinase is a mediator of radioresistance and survival in head and neck squamous cell carcinoma. Acta Oncol. 2014;53(5):637–645. DOI: 10.3109/0284186X.2013.835493

15. Bhattacharya R., Ye X.C., Wang R. Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells Cancer Res. 2016;76(10):3014–3024. DOI: 10.1158/0008-5472.CAN-15-1605

16. Wey J.S., Fan F., Gray M.J. Vascular endothelial growth factor receptor 1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer. 2005;104(2):427–438. DOI: 10.1002/cncr.21145

17. Ii M., Takenaka H., Asai J. Endothelial progenitor thrombospondin 1 mediates diabetes induced delay in reendothelialization following arterial injury. Circulation research. 2006;98(5):697–704. DOI: 10.1161/01.RES.0000209948.50943.ea

18. Hazarika S., Dokun A.O., Li Y. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circulation research. 2007;101(9):948–956. DOI: 10.1161/CIRCRESAHA.107.160630

19. Tan K., Lessieur E., Cutler A. Impaired function of circulating CD34(+)CD45( ) cells in patients with proliferative diabetic retinopathy. Experimental eye research. 2010;91(2):229–237. DOI: 10.1016/j.exer.2010.05.012

20. Michurova M.S., Kalashnikov V.Yu., Smirnova O.M., Kononenko I.V., Ivanova O.N. The role of endothelial progenitor cells in the development of complications of diabetes mellitus Diabetes mellitus. Saharnyj diabet. 2015;1:24–32 (In Russ.).

21. Butler J.M., Guthrie S.M., Koc M. SDF 1 is both necessary and sufficient to promote proliferative retinopathy. Journal of Clinical Investigation. 2005;115(1):86–93. DOI: 10.1172/JCI200522869

22. Fadini G.P. Is bone marrow another target of diabetic complications? European journal of clinical investigation. 2011;41(4):457–463. DOI: 10.1111/j.1365-2362.2010.02417.x

23. Khan S.S., Solomon M.A., McCoy J.P. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry Part B: Clinical Cytometry. 2005;64B(1):1–8. DOI: 10.1002/cyto.b.20040

24. Peichev M., Naiyer A.J., Pereira D. Expression of VEGFR 2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–958. DOI: 10.1182/blood.V95.3.952.003k27_952_958

25. Raeve H., Van Marck E., Van Camp B., Vanderkerken K. Angiogenesis and the role of bone marrow endothelial cells in haematological malignancies Histol Histopathol. 2004;19:935–950. DOI: 10.14670/HH-19.935

26. Del Papa N., Quirici N., Soligo D., Scavullo C., Cortiana M., Borsotti C., Maglione W., Comina D.P., Vitali C., Fraticelli P., Gabrielli A., Cortelezzi A., Lambertenghi Deliliers G. Del Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum. 2006;54(8):2605–2615. DOI: 10.1002/art.22035

27. Schmidt Lucke C., Fichtlscherer S., Aicher A., Tschöpe C., Schultheiss H. P., Zeiher A.M., Dimmeler S. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS One. 2010;5(11):13790с. DOI: 10.1371/journal.pone.0013790

28. Lanuti P., Santilli F., Marchisio M., Pierdomenico L., Vitacolonna E., Santavenere E., Iacone A., Davì G., Romano M., Miscia S. A novel flow cytometric approach to distinguish circulating endothelial cells from endothelial microparticles: relevance for the evaluation of endothelial dysfunction. J. Immunol. Methods. 2012;380(1–2):16–22. DOI: 10.1016/j.jim.2012.03.007

29. Hristov M.W., Erl P.C. Weber Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler. Thromb. Vasc. Biol. 2003;23(7):1185–1193. DOI: 10.1161/01.ATV.0000073832.49290.B5

30. Blann A.D., Woywodt A., Bertolini F., Bull T.M., Buyon J.P., Clancy R.M., Haubitz M., Hebbel R.P., Lip G.Y.H., Mancuso P., Sampol J., Solovey A., Dignat George F. Circulating endothelial cells. Biomarker of vascular disease. Thromb. Haemost. 2005;93(2):28–35. DOI: 10.1160/TH04-09-0578

31. Clinical recommendations “Uveal melanoma”, approved by the Ministry of Health of the Russian Federation, 2020 (In Russ.). https://diseases.medelement.com/disease/%D1%83%D0%B2%D0%B5%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F%D0%BC%D0%B5%D0%BB%D0%B0%D0%BD%D0%BE%D0%BC%D0%B0 %D0%BA%D0%BF %D1%80%D1%84 2020/16856

32. Brierley J., Gospodarowicz M.K., Wittekind C. (eds.). TNM classification of malignant tumours, Eighth edition edn. Oxford, UK; Hoboken, NJ: John Wiley & Sons, Inc, 2017.

33. Guidelines for immunohistochemical diagnosis of human tumors. Eds. S.V. Petrova, N.T. Rajhlina. Kazan’: Titul, 2004. 451 p. (In Russ.).

34. Dabbs D.J. Diagnostic immunohistochemistry. Churchill Livingstone, Philadelphia, 2002. 641 p.

35. Astahova S.E., Likhvantseva V.G., Uhov Yu.I., Stepanova E.V., Vereshchagina M.V. Markers of angiogenesis in the prognosis of uveal melanoma. Medical Immunology = Medicinskaya immunologiya, Sankt-Peterburg. 2003;5(3–4):346 (In Russ.).


Review

For citations:


Likhvantseva V.G., Anurova O.A., Astakhova S.E., Vereshchagina M.V., Ovanesyan V.E., Stepanova E.V. Study of the Phenotype of Endothelial Cells in the Vessels of Uveal Melanoma. Ophthalmology in Russia. 2022;19(4):789-796. (In Russ.) https://doi.org/10.18008/1816-5095-2022-4-789-796

Views: 441


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)