Application of InP/ZnSe/ZnS Quantum Dots in the Treatment of Experimental Antibiotic-Resistant Endophthalmitis in vivo
https://doi.org/10.18008/1816-5095-2023-1-120-127
Abstract
Purpose: modeling of experimental antibiotic-resistant endophthalmitis on laboratory animals model describing the interaction of quantum dots and a biological organism and its physicochemical and kinetic aspects.
Material and methods. The object of the study is laboratory New Zealand rabbits (2 male, age 4 months, weight 3.5 kg). The inflammation inductor is the culture of Methicillin-Resistant Staphylococcus Aureus (MRSA). 1 mg/0.05 ml of vancomycin in combination with 0.5 μg (0.01 %)/0.05 ml by a solution of quantum dots InP/ZnSe/ZnS 660 was intravitreally administrated to the first rabbit. 1 mg/0.1 ml of vancomycin was intravitreally administrated to the second rabbit. Dynamic observation of the clinical process was performed daily by photo registration of the front segment and ultrasonic sonography.
Results. The conjugate based on 1 mg/0.05 ml vancomycin coupled with 0.5 μg (0.01 %)/0.05 ml quantum dots InP/ZnSe/ZnS 660 demonstrated high anti-infectious activity against vancomycin-resistant MRSA. It was shown that the effect of the above solution on MRSA is described by the one-time ability of quantum dots by using electron microscopy. The presence of superoxide radicals O2–• generation in an aqueous solution of quantum dots under the action of blue light has also been proven by spectrophotometric method.
Conclusion. Conjugates based on quantum dots can be considered as one of the promising directions of treatment of antibiotic-resistant endophthalmitis.
About the Authors
V. O. PonomarevRussian Federation
Ponomarev Vyacheslav O. - PhD, ophthalmosurgeon, deputy general director for scientific and clinical work
Academician Bardin str., 4A, Yekaterinburg, 620149, Russian Federation
V. N. Kazaykin
Russian Federation
Kazaykin Viktor N. - MD, ophthalmic surgeon, leading researcher
Academician Bardin str., 4A, Yekaterinburg, 620149, Russian Federation
K. A. Tkachenko
Russian Federation
Tkachenko Konstantin A. -ophthalmologist
Academician Bardin str., 4A, Yekaterinburg, 620149, Russian Federation
A. S. Vokhmintsev
Russian Federation
Vokhmintsev Alexander S. - PhD (Phys.‑Math.), Associate Professor
Mira str., 19, Yekaterinburg, 620002, Russian Federation
I. A. Weinstein
Russian Federation
Weinstein Ilya A. - MD (Phys.‑Math.), Professor, chief researcher
Mira str., 19, Yekaterinburg, 620002, Russian Federation
A. E. Zhdanov
Russian Federation
Zhdanov Alexey E. - research engineer
Mira str., 19, Yekaterinburg, 620002, Russian Federation
References
1. Tabatabaei S.A., Aminzade S., Ahmadraji A., Kasaee A., Cheraqpour K. Early and complete vitrectomy versus tap and inject in acute post cataract surgery endophthalmitis presenting with hand motion vision; a quasi experimental study. BMC Ophthalmology. 2022;22(1):16. DOI: 10.1186/s12886-022-02247-8
2. Taban M., Behrens A., Newcomb R.L., Nobe M.Y., Saedi G., Sweet P.M., McDonnell P.J. Acute endophthalmitis following cataract surgery: A systematic review of the literature. Archives of Ophthalmology. 2005;123(5):613–620. DOI: 10.1001/ar-chopht.123.5.613
3. Results of the Endophthalmitis Vitrectomy Study: A Randomized Trial of Immediate Vitrectomy and of Intravenous Antibiotics for the Treatment of Postoperative Bacterial Endophthalmitis. Archives of Ophthalmology. 1995;113(12):1479–1496. DOI: 10.1001/archopht.1995.01100120009001
4. Dib B., Morris R.E., Oltmanns M.H., Sapp M.R., Glover J.P., Kuhn F. Complete and early vitrectomy for endophthalmitis after cataract surgery: An alternative treatment paradigm. Clinical Ophthalmology.2020;14:1945–1954. DOI: 10.2147/OPTH.S253228
5. Relhan N., Pathengay A., Schwartz S.G., Flynn H.W. Jr. Emerging Worldwide Antimicrobial Resistance, Antibiotic Stewardship and Alternative Intravitreal Agents for the Treatment of Endophthalmitis. Retina. 2017;37(5):811–818. DOI: 10.1097/IAE.0000000000001603
6. Read A.F., Woods R.J. Antibiotic resistance management. Evol. Med. Public Health. 2014;14(1):147. DOI: 10.1093/emph/eou024
7. Bartlett J.G., Gilbert D.N., Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013;56(10):1445–1450. DOI: 10.1093/cid/cit070
8. No authors listed. The antibiotic alarm. Nature. 2013;495(7440):14. DOI: 10.1038/495141a
9. Viswanathan V.K. Off label abuse of antibiotics by bacteria. Gut. Microbes. 2014;5(1):3–4. DOI: 10.4161/gmic.28027
10. Luyt C.E., Brechot N., Trouillet J.L., Chastre J. Antibiotic stewardship in the intensive care unit. Crit. Care. 2014;18(5):480. DOI: 10.1186/s13054-014-0480-6
11. Grzybowski A., Brona P., Kim S.J. Microbial flora and resistance in ophthalmology: a review. Graefes Arch. Clin. Exp. Ophthalmol. 2017;255(5):851–862. DOI: 10.1007/s00417-017-3608-y
12. Miller D. Update on the Epidemiology and Antibiotic Resistance of Ocular Infections. Middle East Afr. J. Ophthalmol. 2017;24(1):30–42. DOI: 10.4103/meajo.MEA-JO_276_16
13. Michael C.A., Dominey Howes D., Labbate M. The antibiotic resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145. DOI: 10.3389/fpubh.2014.00145
14. David M., Richards D.M., Endres R.G. The Mechanism of Phagocytosis: Two Stages of Engulfment. Biophys J. 2014 Oct 7;107(7):1542–1553. DOI: 10.1016/j.bpj.2014.07.070
15. Courtney C.M., Goodman S.M., Nagy T.A., Levy M., Bhusal P., Madinger N.E. Potentiating antibiotics in drug resistant clinical isolates via stimuli activated superoxide generation. Sci. Adv. 2017;3(10):1–10. DOI: 10.1126/sciadv.170177
16. Courtney C.M., Goodman S.M., McDaniel J.A., Madinger N.E., Chatterjee A., Nagpal P. Photoexcited quantum dots for killing multidrug resistant bacteria. Nat. Mater. 2016;15:529–534. DOI: 10.1038/nmat4542
17. Cheeseman K.H., Slater T.F. An introduction to free radical biochemistry. Brit. Med. Bull. 1993;49:481–493. DOI: 10.1093/oxfordjournals.bmb.a072625
18. Cross A.R., Jones O.T.G. Enzymic mechanisms of superoxide production. Biochem. biophys. acta. 1991;1057:281–298. DOI: 10.1016/s0005-2728(05)80140-9
19. Sandhu S.K., Kaur G. Mitochondrial Electron Transport Chain Complexes in Aging Rat Brain and Lymphocytes. Biogerontol. 2003;4(1):19–29. DOI: 10.1023/a:1022473219044
20. Kinnula V.L., Soini Y., Kvist Makela K., Savolainen E.R., Koistinen P. Antioxidant defense mechanisms in human neutrophils. Antioxid. Redox Signal. 2002;4(1):27–34. DOI: 10.1089/152308602753625825
21. Valko M., Leibfritz D., Moncol J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. DOI: 10.1016/j.biocel.2006.07.001
22. Imlay J.A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 2013;11:443–454. DOI: 10.1038/nrmicro3032
23. Goodman M., Levy M., Fei Fei L. Designing Superoxide Generating Quantum Dots for Selective Light-Activated Nanotherapy. Front. Chem. 2018;46(6):1–12. DOI: 10.3389/fchem.2018.00046
24. Ponomarev V.O., Kazaykin V.N., Lizunov A.V. , Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V. Evaluation of the ophthalmotoxic effect of quantum dots and bioconjugates based on them in terms of the prospects for the treatment of resistant endophthalmitis. Experimental research (stage 1). Ophthalmology in Russia = Oftal’mologiya. 2021;18(3):476–487 (In Russ.). DOI: 10.18008/1816-5095-2021-3-476-487
25. Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V. Evaluation of the ophthalmotoxic effect of quantum dots and bioconjugates based on them in terms of the prospects for the treatment of resistant endophthalmitis. Experimental research. Part 2. (stage 1). Ophthalmology = Oftal’mologiya. 2021;18(4):876–884 (In Russ.). DOI: 10.18008/1816-5095-2021-4-876-884
26. Yaghini E., Pirker K.F., Kay C.W.M., Seifalian A.M., Macrobert A.J. Quantification of reactive oxygen species generation by photoexcitation of PEGylated quantum dots. Small. 2014;10(24):5106–5115. DOI: 10.1002/smll.201401209
27. Healy V.L., Lessard I.A., Roper D.I., Knox J.R., Walsh C.T. Vancomycin resistance in enterococci: reprogramming of the d Ala–d Ala ligases in bacterial peptidoglycan biosynthesis. Chemestry and Biology. 2000;7(5):109–119. DOI: 10.1016/S1074-5521(00)00116-2
28. Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Rozanova S.M., Kirf M.V. Laboratory analysis of the anti infectious activity of quantum dots and bioconjugates based on them in the aspect of the prospects for the treatment of inflammatory diseases of the eye. Experimental research (Part 3). Ophthalmology = Ophthalmology in Russia. 2022;19(1):188–194 (In Russ.). DOI: 10.18008/1816-5095-2022-1-188-194
29. McCollum C.R., Bertram J.R., Nagpal P., Chatterjee A. Photoactivated Indium Phosphide Quantum Dots Treat Multidrug Resistant Bacterial Abscesses In Vivo. ACS Appl Mater Interfaces. 2021 Jul 7;13(26):30404–30419. DOI: 10.1021/acsami.1c08306. Epub 2021 Jun 22.PMID: 34156817
30. McCollum C.R., Levy M., Bertram J.R., Nagpal P., Chatterjee A. Photoexcited Quantum Dots as Efficacious and Nontoxic Antibiotics in an Animal Model. ACS Biomater Sci Eng. 2021 May 10;7(5):1863–1875. DOI: 10.1021/acsbiomaterials.0c01406
Review
For citations:
Ponomarev V.O., Kazaykin V.N., Tkachenko K.A., Vokhmintsev A.S., Weinstein I.A., Zhdanov A.E. Application of InP/ZnSe/ZnS Quantum Dots in the Treatment of Experimental Antibiotic-Resistant Endophthalmitis in vivo. Ophthalmology in Russia. 2023;20(1):120-127. (In Russ.) https://doi.org/10.18008/1816-5095-2023-1-120-127