Possibilities of Using Laser Radiation in Vitreoretinal Surgery
https://doi.org/10.18008/1816-5095-2023-3-405-413
Abstract
Currently, laser technologies are widely used in the treatment of diseases of the eye and its accessory apparatus. Basically, they are used in oculoplastic surgery during operations on the accessory apparatus of the eye, in refractive and corneal surgery, laser support for ultrasound cataract surgery, laser treatment of glaucoma, laser coagulation of the retina, thermotherapy of choroidal formations. In the 21st century, Nd: YAG laser treatment of floating opacities in the vitreous body began to be actively popularized with mixed results. In vitreoretinal surgery, which is improving every decade, laser technology remains at the level of the 20th century. In endovitreal surgery, the laser is still used only for endolaser coagulation of the retina, despite the fact that there is a huge potential for using lasers as a “laser scalpel” for removing the vitreous, precision removal of a retinal tear, epiretinal fibrosis, precision retinotomy, and choroidotomy. In this regard, it is necessary to search for the most suitable laser radiation, which will make it possible to carry out thin cuts on the retina and choroid with high accuracy, minimal damage to the surrounding tissues, and a sufficient degree of coagulation to prevent hemorrhages. This laser will allow for surgical interventions in the posterior eye segment with a lower risk of intra- and postoperative complications, as well as better anatomical and functional results. With further development, this new approach to laser ablation may become an alternative to mechanical instruments for surgical dissection and removal of pathological tissue from the surface of the retina.
About the Authors
D. V. PetrachkovRussian Federation
Petrachkov Denis V., PhD, head of the Department “Innovative vitreoretinal technologies”
Rossolimo str., 11 A, B, Moscow, 119021
E. N. Korobov
Russian Federation
Korobov Egor N., PhD, junior researcher of the Department “Innovative vitreoretinal technologies”
Rossolimo str., 11 A, B, Moscow, 119021
References
1. Krasnov MM, Saprykin PI, Doronin PP. Electron Microscopic examination of the eye fundus during laser coagulation. Annals of Ophthalmology. 1973;89(2):13–15 (In Russ.).
2. Stepanov AV, Babizhaev MA, Ivanov AN. Photodamage to the eye when exposed to Q-switched ND:YAG laser radiation: physical and chemical structural changes in the lens and vitreous body. Annals of Ophthalmology. 1990;106(1):31–35 (In Russ.).
3. Stepanov AV. IAG-lazernaya khirurgiya oslozhnenii posle rekonstruktivnoi kerato plastiki. Journal of Ophthalmology (Ukraine) 1990;5:273–276 (In Russ.).
4. L’Esperance FA. The treatment of ophthalmic vascular disease by argon laser photo coagulation. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1969;73:1077–1096.
5. Little HL, Zweng HC, Peabody RR. Argon laser slit-lamp retinal photocoagulation. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1970;74(1):85–97. 6. Draeger J. Integrated YAG laser microsurgical microscope. Dev Ophthalmol. 1987;14:88–92. doi: 10.1159/000414369.
6. Peyman GA, Conway MD, Ganti S. A neodymium-YAG endolaser. Ophthalmic Surg. 1983;14(4):309–313. 8. Patel CKN. Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2. Physical review journals archive. 1964;136(5):1187–1193. doi: 10.1103/PhysRev.136.A1187.
7. Langelier NA, Liss J, Leyngold IM. CO2 Laser Lash Tilt Technique for the Treatment of Mild to Moderate Lash Ptosis and Augmentation of Upper Eyelid Blepharoplasty Results. Ophthalmic Plast Reconstr Surg. 2019;35(4):399–402. doi: 10.1097/ IOP.0000000000001362.
8. Zhang J, Duan J, Gong L. Super pulse CO2 laser therapy for benign eyelid tumors. J Cosmet Dermatol. 2018;17(2):171–175. doi: 10.1111/jocd.12375.
9. Zhang H, Tang T, Yan X. CO2 Laser-Assisted Deep Sclerectomy Surgery Compared with Trabeculectomy in Primary Open-Angle Glaucoma: Two-Year Results. J Oph thalmol. 2021;2021:6639583. doi: 10.1155/2021/6639583.
10. Klink T, Schlunck G, Lieb W. CO2Excimer and Erbium:YAG Laser in Deep Sclerectomy. Ophthalmologica. 2008;222(2):74–80. doi: 10.1159/000112622.
11. Ling R, Borkenstein EM, Borkenstein AF. Evaluation of Nd:YAG Laser Capsulot omy Rates in a Real-Life Population. Clin Ophthalmol. 2020;14:3249–3257. doi: 10.2147/OPTH.S276329.
12. He M, Jiang Y, Huang S. Laser peripheral iridotomy for the prevention of angle closure: a single-centre, randomised controlled trial. Lancet. 2019;393(10181):1609– 1618. doi: 10.1016/S0140-6736(18)32607-2.
13. Brown GC, Benson WE. Treatment of diabetic traction retinal detachment with the pulsed neodymium-YAG laser. Am J Ophthalmol. 1985;99:258–262. doi: 10.1016/0002-9394(85)90353-8.
14. Hrisomalos NF, Jampol LM, Moriarty BJ. Neodymium-YAG laser vitreolysis in sickle cell retinopathy. Arch Ophthalmol. 1987;105:1087–1091. doi: 10.1001/archopht.1987.01060080089034.
15. Jagger JD, Hamilton AM, Polkinghorne P. Q-switched neodymium YAG laser vitreolysis in the therapy of posterior segment disease. Graefes Arch Clin Exp Ophthalmol. 1990;228:222–225. doi: 10.1007/BF00920024.
16. Tatsui T, Ohara K, Shimizu H. Nd:YAG laser photodisruption of the vitreous traction in avulsed retinal vessel syndrome. Ophthalmic Surg. 1990 Jun;21(6):423–427.
17. Shaimova VA, Shaimov TB, Boiko EV. Preventive laser treatment of tractional symptomatic retinal flap tears: long-term outcomes. Annals of Ophthalmology. 2020;136(3):32–38 (In Russ.). doi: 10.17116/oftalma202013603132.
18. Khadka D, Bhandari S, Bajimaya S. Nd:YAG laser hyaloidotomy in the management of Premacular Subhyaloid Hemorrhage. BMC Ophthalmol. 2016;16:41. doi: 10.1186/s12886-016-0218-0.
19. Akduman L, Currie M, Scanlon C. ND-yag laser arteriotomy for central retinal artery occlusion. Retin Cases Brief Rep Fall. 2013;7(4):325–327. doi: 10.1097/ICB.0b013e31828ef0f2.
20. Fleck BW, Dhillon BJ, Khanna V. Nd:YAG laser augmented pneumatic retinopexy. Ophthalmic Surg. 1988;19:855–858.
21. Tsai WF, Chen YC, Su CY. Treatment of vitreous floaters with neodymium YAG laser. Br J Ophthalmol. 1993;77:485–488. doi: 10.1136/bjo.77.8.485.
22. Sendrowski DP, Bronstein MA. Current treatment for vitreous floaters. Optometry. 2010;81:157–161. doi: 10.1016/j.optm.2009.09.018.
23. Milston R, Madigan MC, Sebag J. Vitreous floaters: etiology, diagnostics, and management. Surv Ophthalmol. 2016;61:211–227. doi: 10.1016/j.survophthal.2015.11.008.
24. Katsanos A, Tsaldari N, Gorgoli K. Safety and Efficacy of YAG Laser Vitreolysis for the Treatment of Vitreous Floaters: An Overview. Adv Ther. 2020 Apr;37(4):1319– 1327. doi: 10.1007/s12325-020-01261-w.
25. Delaney YM, Oyinloye A, Benjamin L. Nd:YAG vitreolysis and pars plana vitrectomy: surgical treatment for vitreous floaters. Eye (Lond). 2002;16:21–26. doi: 10.1038/sj.eye.6700026.
26. Shah CP, Heier JS. YAG laser vitreolysis vs sham YAG vitreolysis for symptomatic vitreous floaters: a randomized clinical trial. JAMA Ophthalmol. 2017;135:918– 923. doi: 10.1001/jamaophthalmol.2017.2388.
27. Hahn P, Schneider EW, Tabandeh H, Wong RW, Emerson GG, American Society of Retina Specialists Research and Safety in Therapeutics (ASRS ReST) Committee. Reported Complications Following Laser Vitreolysis. JAMA Ophthalmol.2017;135:973–976. doi: 10.1001/jamaophthalmol.2017.2477.
28. Huang KH, Weng TH, Chen YJ, Chang YH. Iatrogenic posterior lens capsule rupture and subsequent complications due to Nd:YAG laser vitreolysis for vitreous floaters: a case report. Ophthalmic Surg Lasers Imaging Retina. 2018;49:214–217. doi: 10.3928/23258160-20181101-21.
29. Koo EH, Haddock LJ, Bhardwaj N. Cataracts induced by neodymium-yttrium-aluminiumgarnet laser lysis of vitreous floaters. Br J Ophthalmol. 2017;101:709–711. doi: 10.1136/bjophthalmol-2016-309005.
30. Cowan LA, Khine KT, Chopra V. Refractory open-angle glaucoma after neodym ium-yttrium-aluminum-garnet laser lysis of vitreous floaters. Am J Ophthalmol. 2015;159:138–143. doi: 10.1016/j.ajo.2014.10.006.
31. Van der Veken A, Van de Velde F, Smeets B, Tassignon MJ. Nd:YAG laser posterior hyaloidotomy for the treatment of a premacular vitreous floater. Bull Soc Belge Ophtalmol. 1997;265:39–43.
32. Vine AK. Ocular hypertension following Nd:YAG laser capsulotomy: a potentially blinding complication. Ophthalmic Surg. 1984;15:283–284.
33. Srinivasan R, Wynne JJ, Blum SE. Far-UV photoetching of organic material. Laser Focus. 1983;May:62–66. 36. Trokel SL, Srinivasan R, Braren B. Excimer laser-surgery of the cornea. Am. J. Oph thalmol. 1983;96:710–15. doi: 10.1016/s0002-9394(14)71911-7.
34. Kurtz RM, Horvath C, Liu HH. Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes. J. Refract. Surg. 1998;14:541–548.
35. Bashir ZS, Ali MH, Anwar A. Femto-lasik: The recent innovation in laser assisted refractive surgery. J Pak Med Assoc. 2017;67(4):609–615.
36. Abdellah MM, Ammar HG. Femtosecond Laser Implantation of a 355-Degree Intrastromal Corneal Ring Segment in Keratoconus: A Three-Year Follow-Up. J Oph thalmol. 2019;2019:6783181. doi: 10.1155/2019/6783181.
37. Charles Crozafon P, Bouchet C, Zignani M. Comparison of real-world treatment outcomes of femtosecond laser-assisted cataract surgery and phacoemulsification cataract surgery: A retrospective, observational study from an outpatient clinic in France. Eur J Ophthalmol. 2021;31(4):1809–1816. doi: 10.1177/1120672120925766.
38. Merker M, Ackermann R, Kammel R. An In Vitro Study on Focusing fs-Laser Pulses Into Ocular Media for Ophthalmic Surgery. Lasers Surg Med. 2013;45(9):589– 596. doi: 10.1002/lsm.22179.
39. Serebryakov VA. Reference abstract of lectures on the course “Laser technologies in medicine”. Saint Peterburg: SPbGU ITMO; 2009 (In Russ.).
40. Serebryakov VA. Report on the work performed under the project “Development of a laser device with tunable radiation for precision atraumatic soft tissue surgery in neurosurgery and ophthalmology. Saint Peterburg: SPbGU ITMO; 2009 (In Russ.).
41. Shen JH, Harrington JA, Edwards GS. Hollow-glass waveguide delivery of an infrared free-electron laser for microsurgical applications. Applied Optics. 2001;40(4):583–587. doi: 10.1364/ao.40.000583.
42. Hemo I, Palanker D, Turovets I. Vitreoretinal surgery assisted by the 193-nm excimer laser. Invest Ophthalmol Vis Sci. 1997;38:1825–1829.
43. Palanker D, Hemo I, Turovets I. Vitreoretinal ablation in fluid media with 193 nm excimer laser beam. Invest Ophthalmol Vis Sci. 1994;35:3835–3840.
44. Schastak S, Yafai Y, Yasukawa T. Flexible UV Light Guiding System for Intraocular Laser Microsurgery. Lasers Surg Med. 2007;39(4):353–357. doi: 10.1002/lsm.20480.
45. Kaido TJ, Kash RL, Sasnett MW. Cytotoxic and mutagenic action of 193-nm and 213-nm laser radiation. J Refract Surg. 2002;18:529–534.
46. D’Amico DJ, Blumenkranz MS, Lavin MJ. Multicenter Clinical Experience Using an Erbium:YAG Laser for Vitreoretinal Surgery. Ophthalmology. 1996;103(10):1575– 1585. doi: 10.1016/s0161-6420(96)30460-0.
47. Peyman GΑ, Katoh N. Effects of an erbium: YAG laser on ocular structures. Int Ophthalmol. 1987;10(4):245–253. doi: 10.1007/BF00155632.
48. Margolis TI, Farnath DΑ, Destro M. Erbium-YAG laser surgery on experimental vitreous membranes. Arch Ophthalmol. 1989;107(3):424–428. doi: 10.1001/archopht.1989.01070010434040.
49. D’Amico DJ, Moulton RS, Theodossiadis PG. Erbium:YAG Laser Photothermal Ret inal Ablation in Enucleated Rabbit Eyes. Am J Ophthalmol. 1994;117(6):783–790. doi: 10.1016/s0002-9394(14)70323-x.
50. Mrochen M, Petersen H, Wüllner CH. Experimental results of erbium:YAG laser vitrectomy. Klin Monbl Augenheilkd. 1998;212(1):50–54. doi: 10.1055/s-20081034831.
51. Binder S, Stolba U, Kellner L. Erbium:YAG Laser Vitrectomy: Clinical Results. Am J Ophthalmol. 2000;130(1):82–86. doi: 10.1016/s0002-9394(00)00399-8.
52. Bochow TW, Kim RY, Berger JW. Photovitrectomy-a novel approach for vitreous removal. Invest Ophthalmol Vis Sci. 1995;36:S384.
53. Krause MH, D’Amico DJ. Ablation of vitreous tissue with a high repetition rate erbium:YAG laser. Eur J Ophthalmol. 2003;13(5):424–432. doi: 10.1177/112067210301300502.
54. Mrochen M, Riedel P, Donitzky C. Erbium: yttrium–aluminum–garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry. J Biomed Opt. 2001;6(3):344–350. doi: 10.1117/1.1381052.
55. Hutchens TC, Darafsheh A, Fardad A. Detachable microsphere scalpel tips for potential use in ophthalmic surgery with the erbium:YAG laser. J Biomed Opt. 2014;19(1):18003. doi: 10.1117/1.JBO.19.1.018003.
56. Serebryakov VA, Boiko EV, Kalintsev AG. Middle infrared laser for precision sur gery. Journal of Optical Technology. 2015;82(12):3–13 (In Russ.).
57. Mackanos MAW, Simanovskii D, Joos KM/ Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL). Lasers Surg Med. 2007;39(3):230–236. doi: 10.1002/lsm.20461.
58. Haglund RF. Applications of free electron lasers in biological sciences, medicine and material. Photonbased Nanoscience and Nanobiotechnology. Springer, Nether lands, 2006. 62. Soldatov AN, Mirza S, Polunin JP. Multiwavelength metal vapor laser systems for applied spectroscopy of the atmosphere. J. Applied Spectroscopy. 2015;81(6):1025– 1029. doi: 10.1007/s10812-015-0045-8.
59. Hashimura K, Ishii K, Akikusa N. Coagulation and ablation of biological soft tissue by quantum cascade laser with peak wavelength of 5.7 μm. J. Innovative Optical Health Sciences. 2014;7(3):1450029. doi: 10.1142/s1793545814500291.
60. Stoeppler G, Schellhorn M, Eichhorn M. Enhanced beam quality for medical applications at 6.45 μm by using a RISTRA ZGP OPO. Laser Physics. 2012;22(6):1095– 1098. doi: 10.1134/s1054660x12060114.
Review
For citations:
Petrachkov D.V., Korobov E.N. Possibilities of Using Laser Radiation in Vitreoretinal Surgery. Ophthalmology in Russia. 2023;20(3):405-413. (In Russ.) https://doi.org/10.18008/1816-5095-2023-3-405-413