Preview

Ophthalmology in Russia

Advanced search

Retinal Map of Peripheral Retinal Degenerations and Tears. Part 2. Non-rhegmatogenous Chorioretinal Degenerations

https://doi.org/10.18008/1816-5095-2024-3-558-564

Abstract

This part of the work describes the results of a multimodal examination of patients with non-rhegmatogenous chorioretinal peripheral degenerations.

Objective: to conduct a multimodal study of the vitreoretinal interface of chorioretinal degenerations, to determine their place in the classification of peripheral degenerations to create an informative retinal map of peripheral retinal degenerations.

Materials and methods. Patient examinations included traditional and additional ones: the ultrawide-angle fundus imaging with the Clarus 500 or VISUCAM 500 (Carl Zeiss Meditech Inc., Dublin, USA) and wide-field OCT Line scanning using the “sliding method” with SOLIX and RTVue XR Avanti (Optovue Inc. USA).

Results. During the period of 2014-2024, 1304 peripheral degenerations and retinal tears were identified through the multimodal examination of 614 patients (959 eyes). Chorioretinal dystrophy was found in 134 patients: paving-stone degeneration — 75 (5.75 %), retinal drusen — 45 (3.45 %), Doyne honeycomb retinal dystrophy — 8 (0.61 %), retinal pigment epithelium hypertrophy (RPE) — 6 (0.46 %). Based on these studies, a clinical and topographic classification of peripheral degenerations and retinal tears is presented.

Conclusion. In this article (part 2) we present studies of a group of nonrhegmatogenous chorioretinal degenerations with no changes in the vitreoretinal interface. The multimodal diagnostics of peripheral retinal degenerations have enabled the creation of a retinal map in order to systematize knowledge and improve treatment tactics.

About the Authors

V. A. Shaimova
Academy of Postgraduate Education of Federal Medical Biological Agency of Russia; Center Zreniya
Russian Federation

Shaimova Venera A. - МD, Professor of the Ophthalmology department.

Volokolamskoye highway, 91, Moscow, 125371; Komsomolsky ave., 99D, Chelyabinsk, 454021



G. R. Islamova
Center Zreniya
Russian Federation

Islamova Gylnara R. – Ophthalmologist.

Komsomolsky ave., 99D, Chelyabinsk, 454021



N. A. Klyuchko
Center Zreniya
Russian Federation

Klyuchko Natalya A. - PhD, ophthalmologist

Komsomolsky ave., 99D, Chelyabinsk, 454021



T. B. Shaimov
Center Zreniya
Russian Federation

Shaimov Timur B. - PhD, ophthalmologist.

Komsomolsky ave., 99D, Chelyabinsk, 454021



S. Kh. Kuchkildina
Center Zreniya
Russian Federation

Kuchkildina Sirina Kh. – Ophthalmologist.

Komsomolsky ave., 99D, Chelyabinsk, 454021



T. S. Dmukh
“Oculus” Сenter for Vision Correction
Russian Federation

Dmukh Tatyana S. – ophthalmologist.

Mira ave., 122, Krasnoyarsk, 660021



M. S. Ivin
South Ural State Medical University
Russian Federation

Ivin Mikhail S. – Student.

Vorovskogo str., 64, Chelyabinsk, 454048



A. A. Askaeva
Ural State Medical University
Russian Federation

Askaeva Alfiya A. - resident, ophthalmology.

Repina str., 3, Ekaterinburg, 620028



T. G. Kravchenko
Center Zreniya
Russian Federation

Kravchenko Tatyana G. - PhD in Biology, Deputy Director for Research

Komsomolsky ave., 99D , Chelyabinsk, 454021



A. V. Fomin
Tradomed Invest
Russian Federation

Fomin Alexey V. - Director of Clinical Trials

Marksistskaya str., 3/1, Moscow, 109147



References

1. Chhablani J, Bagdi A. Peripheral retinal degenerations. Review: Assigned status Up to Date by Hyde RA on April 29, 2024. Eye Wiki. URL: https://eyewiki.aao.org/Peripheral_Retinal_Degenerations (Accessed 30.03.2024).

2. Shaimova VA., ed. Peripheral retinal dystrophies. Optical coherence tomography. Laser coagulation of the retina: atlas. St. Petersburg: Chelovek; 2015 (In Russ.).

3. Shaimov RB, Shaimova VA, Pozdeeva OG, Shaimov TB. Classification of peripheral retinal dystrophies. Fundamental aspects of mental health. 2017;2:144–149 (In Russ.).

4. Zinn K, Tilden D. Clinical Atlas of Peripheral Retinal Disorders. New York: Springer‑Verlag; 1988.

5. Ivanishko YuA, Miroshnikov VV, Nesterov EA. Peripheral retinal degeneration (primary). Working classification. Indications for laser retinopexy. Okulist. 2003;4:6 (In Russ.).

6. Kanski D. Clinical ophthalmology: a systematic approach. Transl. from English ed. by S.E. Avetisov. Moscow: MEDpress‑inform; 2008 (In Russ.).

7. Jones WL. Peripheral Ocular Fundus. 3rd Edition. London: Butterworth‑Heinemann; 2007. doi: 10.1016/B978‑0‑7506‑7505‑5.X5001‑7.

8. Skuta GL, Cantor LB, Weiss JS, eds. 2011‑2012 Basic and Clinical Science Course, Section 12: Retina and Vitreous. San Francisco: American Academy of Ophthalmology; 2011.

9. Bolshunov A.V., ed. Questions of laser ophthalmology. Moscow: Aprel’; 2013 (In Russ.).

10. Shaimova VA, Islamova GR, Klyuchko NA, Shaimov TB, Kuchkildina SKh, Dmukh TS, Ivin MS, Askaeva AA, Kravchenko TG, Fomin AV. Retinal map of peripheral retinal degenerations and breaks. Part 1. Non‑regmatogenous intraretinal degenerations of the retina. Ophthalmology in Russia. 2024;21(2):311–318 (In Russ.). doi: 10.18008/1816‑5095‑2024‑2‑311‑318.

11. Chu RL, Pannullo NA, Adam CR, Rafieetary MR, Sigler EJ. Morphology of Peripheral Vitreoretinal Interface Abnormalities Imaged with Spectral Domain Optical Coherence Tomography. J Ophthalmol. 2019;2019:3839168. doi: 10.1155/2019/3839168.

12. Kurobe R, Hirano Y, Ogura S, Yasukawa T, Ogura Y. Ultra‑Widefield Swept‑Source Optical Coherence Tomography Findings of Peripheral Retinal Degenerations and Breaks. Clin Ophthalmol. 2021;15:4739–4745. doi: 10.2147/OPTH.S350080.

13. Shaimova VA, Islamova GR, Trubilin VN, Dmukh TS, Kuchkildina SKh, Shaimov TB, Shaimov RB, Kravchenko TG, Fomin AV. Widefield optical coherence tomography as an effective method for detecting imperceptible flap retinal tears (clinical observation). Russian Annals of Ophthalmology. 2023;139(1):93–98 (In Russ.). doi: 10.17116/oftalma202313901193.

14. Choudhry N, Golding J, Manry MW, Rao RC. Ultra‑widefield steering‑based spectral‑domain optical coherence tomography imaging of the retinal periphery. Ophthalmology. 2016;123(6):1368–1374. doi: 10.1016/j.ophtha.2016.01.045.

15. Jiang S, Golding J, Choudhry N. Practical applications of vitreous imaging for the treatment of vitreous opacities with YAG vitreolysis. Int Ophthalmol. 2023;43(10):3587– 3594. doi: 10.1007/s10792‑023‑02765‑4.

16. Salmon JF. Kanski`s Clinical Ophthalmology: A Systematic Approach. 9th Edition. Amsterdam: Elsevier; 2019.

17. Seo T, Iwabuchi K, Kato M, Watanabe I. Reticular degeneration of retinal pigment epithelium. Nippon Ganka Gakkai Zasshi. 1992;96(9):1161–1166 (In Japan.).

18. Singh K, Sekar M, Ayachit A. Peripheral Retinal Degenerations: A Ready Reckoner. Published online: April 1, 2021. eOphtha. URL: https://www.eophtha.com/posts/peripheral-retinal-degenerations-a-ready-reckoner (Accessed 30.03.2024).

19. Retinal Detachment and Predisposing Lesions. In: 2021–2022 Basic and Clinical Science Course, Section 12: Retina and Vitreous. San Francisco: American Academy of Ophthalmology; 2021:307–330.

20. Cheung R, Ly A, Katalinic P, Coroneo MT, Chang A, Kalloniatis M, Madigan MC, Nivison‑Smith L. Visualisation of peripheral retinal degenerations and anomalies with ocular imaging. Semin Ophthalmol. 2022;37(5):554–582. doi: 10.1080/08820538.2022.2039222.

21. Blake EM. Congenital Grouped Pigmentation of the Retina. Trans Am Ophthalmol Soc. 1926;24:223–233.

22. Coleman P, Barnard NA. Congenital hypertrophy of the retinal pigment epithelium: prevalence and ocular features in the optometric population. Ophthalmic Physiol Opt. 2007;27(6):547–555. doi: 10.1111/j.1475‑1313.2007.00513.x.

23. Marmoy OR, Blackwell C, Cornelius S, Thompson DA, Henderson RH. Diffuse bear‑track retina: profound, bilateral, grouped congenital pigmentation of the retinal pigment epithelium in an infant. J AAPOS. 2020;24(6):384–386. doi: 10.1016/j.jaapos.2020.08.003.

24. Ireland AC, Rodman J. Congenital Hypertrophy of Retinal Pigment Epithelium. [Updated 2024 May 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. URL: https://www.ncbi.nlm.nih.gov/books/NBK576424/ (Accessed 17.06.2024).

25. Shields JA, Shields CL, Eagle RC Jr, Singh AD. Adenocarcinoma arising from congenital hypertrophy of retinal pigment epithelium. Arch Ophthalmol. 2001;119(4):597–602. doi: 10.1001/archopht.119.4.597.

26. Sreenivasan J, Rishi P, Das K, Krishnakumar S, Biswas J. Retinal Pigment Epithelium Adenoma and Adenocarcinoma: A Review. Ocul Oncol Pathol. 2021;7(2):121–132. doi: 10.1159/000509484.

27. Shaimova VA, ed. Peripheral Retinal Degenerations. Optical Coherence Tomography and Retinal Laser Coagulation. 2nd Edition. Cham: Springer International Publishing; 2017. doi: 10.1007/978‑3‑319‑48995‑7.

28. Wang H, Ly A, Yapp M, Assaad N, Kalloniatis M. Multimodal imaging characteristics of congenital grouped hyperand hypo‑pigmented fundus lesions. Clin Exp Optom. 2020;103(5):641–647. doi: 10.1111/cxo.12984.

29. Mishra CA, Aggarwal S, Shah S, Negi P. An interesting case of “bear track dystrophy”. Egyptian Retina Journal. 2014;2(3):114–117. doi: 10.4103/2347‑5617.164632.

30. Lengyel I, Csutak A, Florea D, Leung I, Bird AC, Jonasson F, Peto T. A PopulationBased Ultra‑Widefield Digital Image Grading Study for Age‑Related Macular Degeneration‑Like Lesions at the Peripheral Retina. Ophthalmology. 2015;122(7):1340– 1347. doi: 10.1016/j.ophtha.2015.03.005.

31. Rudolf M, Clark ME, Chimento MF, Li CM, Medeiros NE, Curcio CA. Prevalence and morphology of druse types in the macula and periphery of eyes with age‑related maculopathy. Invest Ophthalmol Vis Sci. 2008;49(3):1200–1209. doi: 10.1167/iovs.07‑1466.

32. Ditmar S, Khol’ts FG. Fluorescein angiography in ophthalmology: atlas. Moscow: GEOTAR‑Media; 2011 (In Russ.).

33. Khaiman Kh, Kel’ner U, Ferster M. Atlas of fundus angiography. Moscow: MEDpressinform; 2008 (In Russ.).

34. Sharma P, Shareef I, Kalaw FGP, Kako RN, Lin A, Alex V, Nudleman E, Walker EH, Borooah S. Prevalence of peripheral retinal findings in retinal patients using ultrawidefield pseudocolor fundus imaging. Sci Rep. 2023;13(1):20515. doi: 10.1038/s41598‑023‑47761‑x.

35. Küçükiba K, Erol N, Bilgin M. Evaluation of Peripheral Retinal Changes on Ultra‑Widefield Fundus Autofluorescence Images of Patients with Age‑Related Macular Degeneration. Turk J Ophthalmol. 2020;50(1):6–14. doi: 10.4274/tjo.galenos.2019.00359.

36. Corbelli E, Borrelli E, Parravano M, Sacconi R, Gilardi M, Costanzo E, Cavalleri M, Querques L, Bandello F, Querques G. Multimodal imaging characterization of peripheral drusen. Graefes Arch Clin Exp Ophthalmol. 2020;258(3):543–549. doi: 10.1007/s00417‑019‑04586‑7.

37. Morhat MV, Marchenko LN, Morhat VI. Preventive laser coagulation for changes in the peripheral parts of the retina (literature review). Ophthalmology Eastern Europe. 2011;4(11):85–92 (In Russ.).

38. Wu TY, Qi LS, Tang Y, Lyu S., He J, Liu Y. Peripheral retinal abnormalities in adolescents with normal vision in Air Force cadets’ recruitment: A cross sectional study. Acad J Chin PLA Med Sch. 2022;43(6):700–704. doi: 10.3969/j.issn.20955227.2022.06.016.


Review

For citations:


Shaimova V.A., Islamova G.R., Klyuchko N.A., Shaimov T.B., Kuchkildina S.Kh., Dmukh T.S., Ivin M.S., Askaeva A.A., Kravchenko T.G., Fomin A.V. Retinal Map of Peripheral Retinal Degenerations and Tears. Part 2. Non-rhegmatogenous Chorioretinal Degenerations. Ophthalmology in Russia. 2024;21(3):558-564. (In Russ.) https://doi.org/10.18008/1816-5095-2024-3-558-564

Views: 459


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)