Preview

Ophthalmology in Russia

Advanced search

Current Opportunities and Future Prospects of Neuroprotective Therapy in Glaucoma. Literature Review. Part 1

https://doi.org/10.18008/1816-5095-2025-1-5-15

Abstract

This literature review is devoted to one of the most complex ophthalmology problems — neuroprotective and neuroregenerative treatment of glaucoma and consists of two parts. The first part considers the main mechanisms of neurodegeneration and the main aspects of therapeutic control related to these mechanisms (excitotoxicity, mitochondrial dysfunction, oxidative stress). The main aim of the conducted literature analysis is to provide a comprehensive overview of both existing neuroprotective strategies and promising areas of therapy based on neuroprotective agents in the potential treatment of glaucoma. A wide range of approaches to neuroprotection demonstrates the great potential for effective treatment of neurodegeneration in order to preserve visual functions in patients with glaucoma.

About the Authors

N. I. Kurysheva
Medical Biological University of Innovations and Continuing Education, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency; Ophthalmological Center, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency
Russian Federation

Kurysheva Natalia I., MD, Professor, head of the Ophthalmology Department, head of the Consultative and Diagnostic Department

Zhivopisnaya str., 46-8, Moscow, 123098

Gamalei str., 15, Moscow, 123098



A. V. Korneeva
Medical Biological University of Innovations and Continuing Education, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency; Ophthalmological Center, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency
Russian Federation

Korneeva Alina V., ophthalmologist, PhD, department assistant

Zhivopisnaya str., 46-8, Moscow, 123098

Gamalei str., 15, Moscow, 123098



S. I. Ponomareva
Ophthalmological Center, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency
Russian Federation

Ponomareva Saina I., ophthalmologist

Gamalei str., 15, Moscow, 123098



H. M. Plieva
Medical Biological University of Innovations and Continuing Education, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency; Ophthalmological Center, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency
Russian Federation

Plieva Hava M., ophthalmologist, department assistant

Zhivopisnaya str., 46-8, Moscow, 123098

Gamalei str., 15, Moscow, 123098



V. E. Kim
Medical Biological University of Innovations and Continuing Education, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency; Ophthalmological Center, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency
Russian Federation

Kim Valeriya E., ophthalmologist, department assistant

Zhivopisnaya str., 46-8, Moscow, 123098

Gamalei str., 15, Moscow, 123098



I. D. Kim
Medical Biological University of Innovations and Continuing Education, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency; Ophthalmological Center, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency
Russian Federation

Kim Igor D., ophthalmologist, department assistant

Zhivopisnaya str., 46-8, Moscow, 123098

Gamalei str., 15, Moscow, 123098



M. V. Chebotareva
Medical Biological University of Innovations and Continuing Education, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency
Russian Federation

Chebotareva Maria V., resident physician

Zhivopisnaya str., 46-8, Moscow, 123098



References

1. Petrov SYu, Lovpache DN, Brezhnev AYu. International Multicenter Glaucoma Research. Russian Ophthalmological Journal. 2016;9(2):96–101 (In Russ.). doi: 10.21516/2072-0076-2016-9-2-96-101.

2. Kolko M. Present and New Treatment Strategies in the Management of Glaucoma. Open Ophthalmol J. 2015;9:89–100. doi: 10.2174/1874364101509010089.

3. Qi YX, Zhang J, Su XJ. Can neuroprotection effectively manage primary open-angle glaucoma? a protocol of systematic review and meta-analysis. Medicine (Baltimore). 2020;99(23):e20380. doi: 10.1097/MD.0000000000020380.

4. Shen J, Wang Y, Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp Eye Res. 2021;205:108506. doi: 10.1016/j.exer.2021.108506.

5. Clinical guidelines “Primary open-angle glaucoma” (approved by the Russian Ministry of Health). Year of approval 2024. https://cr.minzdrav.gov.ru

6. Clinical guidelines “Primary angle-closure glaucoma” (approved by the Russian Ministry of Health). Year of approval 2024. https://cr.minzdrav.gov.ru

7. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. Journal of Cell Biology. 2007;179:1523–1537. doi: 10.1083/jcb.200706181.

8. Guo L, Salt TE, Maass A. Assessment of neuroprotective effects of glutamate modulation on glaucoma- related retinal ganglion cell apoptosis in vivo. Investigative Ophthalmology and Visual Science. 2006;47(2):626–633. doi: 10.1167/iovs.05-0754.

9. Russo R, Cavaliere F. Modulation of pro- survival and death-associated pathways under retinal ischemia/reperfusion: effects of NMDA receptor blockade. J. of Neurochem. 2008;107(5):1347–1357. doi: 10.1111/j.1471-4159.2008.05694.x.

10. Rusciano D, Pezzino S, Mutolo MG. Neuroprotection in Glaucoma: Old and New Promising Treatments. Adv Pharmacol Sci. 2017;2017:4320408. doi: 10.1155/2017/4320408.

11. Jain KK. Neuroprotective agents. The Handbook of Neuroprotection Humana, New York, 2019. P. 45–173.

12. He S, Stankowska DL, Ellis DZ. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther. 2018;34(1–2):85–106. doi: 10.1089/jop.2017.0041.

13. Pellegrini JW, Lipton SA. Delayed administration of memantine prevents N-methyl-D-aspartate receptor-mediated neurotoxicity. Ann Neurol. 1993;33(4):403–407. doi: 10.1002/ana.410330414.

14. Ju WK, Kim KY, Angert M, Duong-Polk KX, Lindsey JD, Ellisman MH, Weinreb RN. Memantine blocks mitochondrial OPA1 and cytochrome c release and subsequent apoptotic cell death in glaucomatous retina. Invest Ophthalmol Vis Sci. 2009;50(2):707–716. doi: 10.1167/iovs.08-2499.

15. Yücel YH, Gupta N, Zhang Q. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol. 2006;124(2):217–225. doi: 10.1001/archopht.124.2.217.

16. Gupta N, Ang L, de Tilly LN. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90(6):674–678. doi: 10.1136/bjo.2005.086769.

17. Weinreb RN, Liebmann JM, Cioffi GA. Oral Memantine for the Treatment of Glaucoma: Design and Results of 2 Randomized, Placebo-Controlled, Phase 3 Studies. Ophthalmology. 2018;125(12):1874–1885. doi: 10.1016/j.ophtha.2018.06.017.

18. Astakhov YuS, Butin EV, Morozova NV, Sokolov VO. On the neuroprotective effect of acatinol-memantine and betaxolol in patients with primary open-angle glaucoma. Glaucoma: problems and solutions. All-Russian scientific and practical conference. 2004;170–184 (In Russ.).

19. Kurysheva NI, Irtegova EYu, Khodak NA. Evaluation of clinical efficacy of akatinol memantine in the treatment of progressive glaucomatous optic neuropathy. Glaucoma: reality and prospects. Moscow, 2008. P. 233–239 (In Russ.).

20. Osborne NN. Memantine reduces alterations to the mammalian retina, in situ, induced by ischemia. Vis Neurosci. 1999;16(1):45–52. doi: 10.1017/s0952523899161017.

21. Sánchez-López E, Egea MA, Davis BM. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small. 2018;14(2). doi: 10.1002/smll.201701808.

22. Ekici F, Korkmaz Ş, Karaca EE. The Role of Magnesium in the Pathogenesis and Treatment of Glaucoma. Int Sch Res Notices. 2014;2014:745439. doi: 10.1155/2014/745439.

23. Mozaffarieh M, Flammer J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol. 2013;13(1):43–49. doi: 10.1016/j.coph.2012.10.001.

24. Almasieh M, Zhou Y, Kelly ME, Casanova C, Di Polo A. Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors. Cell Death Dis. 2010;1(2):e27. doi: 10.1038/cddis.2009.23.

25. Yamamoto T, Niwa Y, Kawakami H. The effect of nilvadipine, a calcium-channel blocker, on the hemodynamics of retrobulbar vessels in normal-tension glaucoma. J Glaucoma. 1998;7(5):301–305.

26. Rainer G, Kiss B, Dallinger S. A double masked placebo controlled study on the effect of nifedipine on optic nerve blood flow and visual field function in patients with open angle glaucoma. Br J Clin Pharmacol. 2001;52(2):210–212. doi: 10.1046/j.0306-5251.2001.01432.x.

27. Ramdas WD, Wolfs RC, Kiefte-de Jong JC. Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study. Eur J Epidemiol. 2012;27(5):385–393. doi:10.1007/s10654-012-9672-z.

28. Lehrer S, Rheinstein PH. Amlodipine increases risk of primary open-angle glaucoma. Clin Hypertens. 2024;30(1):33. doi: 10.1186/s40885-024-00290-9.

29. Tavakoli K, Sidhu S, Radha Saseendrakumar B, Weinreb RN, Baxter SL. Long-Term Systemic Use of Calcium Channel Blockers and Incidence of Primary Open-Angle Glaucoma. Ophthalmol Glaucoma. 2024t;7(5):491–498. doi: 10.1016/ j.ogla.2024.06.003.

30. Vallabh NA, Lane B, Simpson D, Fuchs M, Choudhary A, Criddle D, Cheeseman R, Willoughby C. Massively parallel sequencing of mitochondrial genome in primary open angle glaucoma identifies somatically acquired mitochondrial mutations in ocular tissue. Sci Rep. 2024;14(1):26324. doi: 10.1038/s41598-024-72684-6.

31. Henderson J, O’Callaghan J, Campbell M. Gene therapy for glaucoma: Targeting key mechanisms. Vision Res. 2024;225:108502. doi: 10.1016/j.visres.2024.108502.

32. Cheung W, Guo L, Cordeiro MF. Neuroprotection in glaucoma: drug-based approaches. Optom Vis Sci. 2008;85(6):406–416. doi: 10.1097/OPX.0b013e31817841e5.

33. Chen M, Liu B, Ma J, Ge J, Wang K. Protective effect of mitochondria‑targeted peptide MTP‑131 against oxidative stress‑induced apoptosis in RGC‑5 cells. Mol Med Rep. 2017;15(4):2179–2185. doi: 10.3892/mmr.2017.6271.

34. Noh YH, Kim KY, Shim MS. Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis. 2013;4(10):e820. doi: 10.1038/cddis.2013.341.

35. Nucci C, Martucci A, Giannini C. Neuroprotective agents in the management of glaucoma. Eye (Lond). 2018;32(5):938–945. doi: 10.1038/s41433-018-0050-2.

36. Martucci A, Reurean-Pintilei D, Manole A. Bioavailability and Sustained Plasma Concentrations of CoQ10 in Healthy Volunteers by a Novel Oral Timed-Release Preparation. Nutrients. 2019;11(3):527. doi: 10.3390/nu11030527.

37. Parisi V, Centofanti M, Gandolfi S. Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J Glaucoma. 2014;23(6):391–404. doi: 10.1097/IJG.0b013e318279b836.

38. Martucci A, Mancino R, Cesareo M. Combined use of coenzyme Q10 and citicoline: A new possibility for patients with glaucoma. Front Med (Lausanne). 2022;9:1020993. doi: 10.3389/fmed.2022.1020993.

39. Pravst I, Rodríguez Aguilera JC, Cortes Rodriguez AB. Comparative Bioavailability of Different Coenzyme Q10 Formulations in Healthy Elderly Individuals. Nutrients. 2020;12(3):784. doi: 10.3390/nu12030784.

40. Oddone F, Rossetti L, Parravano M. Citicoline in Ophthalmological Neurodegenerative Disease: A Comprehensive Review. Pharmaceuticals (Basel). 2021;14(3):281. doi: 10.3390/ph14030281.

41. Sahin AK, Kapti HB, Uzun A. Effect of oral citicoline therapy on retinal nerve fiber layer and ganglion cell-inner plexiform layer in patients with primary open angle glaucoma. Int J Ophthalmol. 2022;15(3):483–488. doi: 10.18240/ijo.2022.03.17.

42. Skopiński P, Radomska-Leśniewska DM, Izdebska J. New perspectives of immunomodulation and neuroprotection in glaucoma. Cent Eur J Immunol. 2021;46(1):105–110. doi: 10.5114/ceji.2021.104329.

43. Lanza M, Gironi Carnevale UA, Mele L. Morphological and Functional Evaluation of Oral Citicoline Therapy in Chronic Open-Angle Glaucoma Patients: A Pilot Study With a 2-Year Follow-Up. Front Pharmacol. 2019;10:1117. doi: 10.3389/fphar.2019.01117.

44. Flammer J, Haefliger IO, Orgul S, Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? Journal of Glaucoma. 1999;8:212–219.

45. Murphy MC, Conner IP, Teng CY, Lawrence JD, Safiullah Z, Wang B, Bilonick RA, Kim SG, Wollstein G, Schuman JS, Chan KC. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Sci Rep. 2016;6:31464. doi: 10.1038/srep31464.

46. Tezel G, Chauhan BC, LeBlanc RP, Wax MB. Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest Ophthalmol Vis Sci. 2003;44(7):3025–3033. doi: 10.1167/iovs.02-1136.

47. Kurysheva NI. Mechanisms of visual function reduction in primary open-angle glaucoma and ways of their prevention: abstract of PhD thesis. Moscow, 2001. 43 p. (In Russ.).

48. Husain S, Abdul Y, Singh S, Ahmad A, Husain M. Regulation of nitric oxide production by δ-opioid receptors during glaucomatous injury. PLoS One. 2014;9(10):e110397. doi: 10.1371/journal.pone.0110397.

49. He S, Liu C, Ren C, Zhao H, Zhang X. Immunological Landscape of Retinal Ischemia-Reperfusion Injury: Insights into Resident and Peripheral Immune Cell Responses. Aging Dis. 2024. doi: 10.14336/AD.2024.0129. Epub ahead of print.

50. Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel). 2024;17(4):441. doi: 10.3390/ph17040441.

51. Sun J, Liu Y, Chen Z. Melatonin and retinal cell damage: molecular and biological functions. Naunyn Schmiedebergs Arch Pharmacol. 2024. doi: 10.1007/s00210-024-03575-w. Epub ahead of print.

52. Hu C, Feng Y, Huang G, Cui K, Fan M, Xiang W, Shi Y, Ye D, Ye H, Bai X, Xu F, Xu Y, Huang J. Melatonin prevents EAAC1 deletion-induced retinal ganglion cell degeneration by inhibiting apoptosis and senescence. J Pineal Res. 2024;76(1):e12916. doi: 10.1111/jpi.12916.

53. Morató X, Tartari JP, Pytel V, Boada M. Pharmacodynamic and Clinical Effects of Ginkgo Biloba Extract EGb 761 and Its Phytochemical Components in Alzheimer’s Disease. J Alzheimers Dis. 2024;101(s1):S285–S298. doi: 10.3233/JAD-231372.

54. Li Y, Zhu X, Wang K, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts (GBE) protect human RPE cells from t-BHP-induced oxidative stress and necrosis by activating the Nrf2-mediated antioxidant defence. J Pharm Pharmacol. 2023;75(1):105–116. doi: 10.1093/jpp/rgac069.

55. Labkovich M, Jacobs EB, Bhargava S, Pasquale LR, Ritch R. Ginkgo Biloba Extract in Ophthalmic and Systemic Disease, With a Focus on Normal-Tension Glaucoma. Asia Pac J Ophthalmol (Phila). 2020;9(3):215–225. doi: 10.1097/APO.0000000000000279.

56. Sim RH, Sirasanagandla SR, Das S, Teoh SL. Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients. 2022;14(3):534. doi: 10.3390/nu14030534.

57. Kang JM, Lin S. Ginkgo biloba and its potential role in glaucoma. Curr Opin Ophthalmol. 2018;29(2):116–120. doi: 10.1097/ICU.0000000000000459.

58. Zhu Q, Liu D. Clinical efficacy and mechanism of Ginkgo biloba extract in the treatment of elderly ischemic cerebrovascular disease. Pak J Pharm Sci. 2024;37(3):705–713.

59. Hirooka K, Tokuda M, Miyamoto O, Itano T, Baba T, Shiraga F. The Ginkgo biloba extract (EGb 761) provides a neuroprotective effect on retinal ganglion cells in a rat model of chronic glaucoma. Curr Eye Res. 2004 Mar;28(3):153–157. doi: 10.1076/ceyr.28.3.153.26246.

60. Xia C, Zhou M, Dong X, Zhao Y, Jiang M, Zhu G, Zhang Z. Ginkgo biloba extract inhibits hippocampal neuronal injury caused by mitochondrial oxidative stress in a rat model of Alzheimer’s disease. PLoS One. 2024;19(8):e0307735. doi: 10.1371/journal.pone.0307735.

61. Polunin GS, Makarov IA, Shirshikov YuK, Makashova NV. The efficacy of the antioxidant preparation Histochrome in the treatment of hemophthalmos in hypertension and diabetes mellitus. Annals of Ophthalmology 2000;116(2):19–20 (In Russ.).

62. Vlasova AS, Malishevskaya TN, Petrov SA, Gubin DG, Petrov SYu, Filippova YuE. The role of mitochondrial dysfunction in the stabilization of the glaucomatous process. Russian Annals of Ophthalmology. 2024;140(4):49–58 (In Russ.). doi: 10.17116/oftalma202414004149.

63. Fedin AI, Evseev VN, Kuznecov OR. Antioxidant therapy of ischemic stroke. Clinical and electrophysiological correlations. Russian Medical Journal. 2009;5:332 (In Russ.).

64. Egorov EA, Davydova NG, Romanenko IA. Mexidol in the complex treatment of glaucoma. Clinical ophthalmology. 2011;12(3):107–109 (In Russ.).

65. Martynova EB. Experimental and clinical substantiation of the use of the new antioxidant “Erisod” in the treatment of open-angle glaucoma: abstract of a PhD diss. St. Petersburg, 1995. 21 p.

66. Moshetova LK, Alekseev IB, Ivashina AV. Results of using the drug Luteincomplex for the treatment of glaucoma optic neuropathy. Clinical ophthalmology. 2005;6:64–67 (In Russ.).


Review

For citations:


Kurysheva N.I., Korneeva A.V., Ponomareva S.I., Plieva H.M., Kim V.E., Kim I.D., Chebotareva M.V. Current Opportunities and Future Prospects of Neuroprotective Therapy in Glaucoma. Literature Review. Part 1. Ophthalmology in Russia. 2025;22(1):5-15. (In Russ.) https://doi.org/10.18008/1816-5095-2025-1-5-15

Views: 388


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)