Femtolaser Assisted Surgery of the First Stage of Keratoprosthesis. Results of the First Clinical Cases
https://doi.org/10.18008/1816-5095-2025-1-200-206
Abstract
Purpose: to evaluate the anatomical and clinical results of using femtosecond laser for cutting out an intrastromal pocket in a vascular leucoma during the first stage of keratoprosthesis.
Patients and methods. This article is a retrospective analysis of 3 patients who underwent the first stage of keratoprosthesis the implantation of a keratoprosthesis supporting plate into an intrastromal pocket formed using femtosecond laser in the thickness of a vascular leucoma. After applanation of the laser handle to the patient’s cornea and previously known data on the thickness of the cornea, the intrastromal pocket was positioned at a depth of 2/3 of the vascular leucoma, then the femtosecond laser was activated and the intrastromal pocket was formed. After the laser work was completed, the intrastromal pocket was revised and the supporting plate was implanted.
Results. When biomicroscopy and optical coherence tomography data measured the thickness of the cornea in the area above and below the supporting plate of the keratoprosthesis in the long-term postoperative period at a period of 6 months, in all three cases, we observe the stable position of keratoprosthesis supporting plate without any signs of protrusion and displacement. This fact made it possible to successfully perform the second stage of keratoprosthesis — installation of an optical cylinder.
Conclusions. The use of a femtosecond laser at the first stage of keratoprosthesis is a possible, safe and faster method in keratoprosthetics of vascular leucoma in patients whom optical corneal transplantation or limbal stem cell transplantation are not indicated. This technology makes it possible to form an intrastromal pocket uniformly in the thickness of the vascular leucoma of the patient’s cornea without the need for transplantation of the keratoprosthetic complex, reducing the risks of protrusion of the keratoprosthetic supporting plate in the long-term postoperative period, which ultimately allows achieving a high functional result. In addition, the use of a femtosecond laser at the first stage of keratoprosthesis reduces the overall operation time and makes this technology available for widespread use in the clinic.
About the Authors
B. E. MalyuginRussian Federation
Malyugin Boris E., MD, Professor of Ophthalmology, Joan & Jerome Snyder Endowed Chair in Cornea Diseases, Stein Eye Institute David Geffen and School of Medicine at UCLA
Beskudnikovsky blvd, 59A, Moscow, 127486
Stein Plaza, 200, CA 90095-7003, Los Angeles
A. V. Golovin
Russian Federation
Golovin Andrey V., PhD, head of the surgery unit
Beskudnikovsky blvd, 59A, Moscow, 127486
O. N. Nefedova
Russian Federation
Nefedova Olga N., postgraduate, ophthalmologist
Beskudnikovsky blvd, 59A, Moscow, 127486
F. Müller
Switzerland
Fabian Lukas Müller, PhD, Director Clinical Research&Application
Allmendstrasse, 11, CH-2562 Port
References
1. Makarov PV, Gundorova RA, Chernetsky IS. Optical keratoprosthetics using Fedorov-Zuev prostheses in patients who suffered particulary severe eye burns. Ophthalosurgery. 2007;3:20–23 (In Russ.).
2. Fedorov SN, Moroz ZI, Zuev VK. Keratoprosthetics. Moscow: Medicine, 1982, 144 p. (In Russ.).
3. Malyugin BE, Borzenok SA, Kovshun EV, Golovin AV, Shatskikh AV, Enkina AV, Ostrovsky DS, Belodedova AV, Jones MM.. Morphological changes in rabbit cornea after implantation of a new keratoprosthesis supporting plate. Russian Annals of Ophthalmology. 2020;136(5):77–86 (In Russ.). doi: 10.17116/oftalma202013605177.
4. Fedorov SN, Moroz ZI, Kovshun EV. A new method of keratoprosthesis for thinned vascular lesions. Ophthalmosurgery. 1995;2:50–53 (In Russ.).
5. Volkov VV Ushakov NA. Complications after keratoprosthesis surgery, their prevention and treatment. Journal of Ophthalmology (Ukraine). 1976;8:569–573 (In Russ.).
6. Volkov VV, Ushakov NA. On the choice of a rational method of strengthening the cataract in the interests of penetrating keratoprosthesis. Issues of restorative ophthalmology: Proceedings of BMOLA. Leningrad, 1972. P. 37–39 (In Russ.).
7. Gundorova RA, Malaev АА. Long-term results of optical 120 keratoprosthesis. Journal of Ophthalmology (Ukraine). 1979;7:396–399 (In Russ.).
8. Aldave AJ, Sangwan VS, Basu S, Basak SK, Hovakimyan A, Gevorgyan O, Kharashi SA, Jindan MA, Tandon R, Mascarenhas J, Malyugin B, Padilla MD, Maskati Q, Agarwala N, Hutauruk J, Sharma M, Yu F. International results with the Boston type I keratoprosthesis. Ophthalmology. 2012 Aug;119(8):1530–1538. doi: 10.1016/j.ophtha.2012.02.015.
9. Chan CC, LoVerde L, Qiang J, Nordlund ML, Holland EJ. Incidence, Risk Factors, and Surgical Management of Boston Type 1 Keratoprothesis Corneal Melts, Leaks, and Extrusions. Cornea. 2016 Aug;35(8):1049–1056. doi: 10.1097/ICO.0000000000000911.
10. Tan A, Tan DT, Tan XW, Mehta JS. Osteo-odonto keratoprosthesis: systematic review of surgical outcomes and complication rates. Ocul Surf. 2012 Jan;10(1):15–25. doi: 10.1016/j.jtos.2012.01.003.
11. Riau AK, Liu Y-C, Lwin NC. Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses. Invest Ophthalmol Vis Sci. 2014;55:3186–3194. doi: 10.1167/iovs.14-14434.
12. Kataev MG, Golovin AV, Nefedova ON, Trofimova IYu. Dependable covering of keratoprosthesis with temporal fascia autograft. Fyodorov Journal of Ophthalmic Surgery. 2024;2(139):43–51 (In Russ.). doi: 10.25276/0235-4160-2024-2-43-51.
13. Kim JH, Lee D, Rhee KI. Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: optical coherence tomography measurement. J Cataract Refract Surg. 2008 Jan;34(1):132–136. doi: 10.1016/j.jcrs.2007.08.036.
14. Sarayba MA, Ignacio TS, Tran DB, Binder PS. A 60 kHz IntraLase femtosecond laser creates a smoother LASIK stromal bed surface compared to a Zyoptix XP mechanical microkeratome in human donor eyes. J Refract Surg. 2007 Apr;23(4):331–337. doi: 10.3928/1081-597X-20070401-04.
15. Terry MA, Ousley PJ, Will B. A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography. Cornea. 2005 May;24(4):453–459. doi: 10.1097/01.ico.0000151509.57189.6f.
16. Seitz B, Brünner H, Viestenz A, Hofmann-Rummelt C, Schlötzer-Schrehardt U, Naumann GO, Langenbucher A. Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser. Am J Ophthalmol. 2005 May;139(5):941–944. doi: 10.1016/j.ajo.2004.11.028.
17. Meltendorf C, Schroeter J, Bug R, Kohnen T, Deller T. Corneal trephination with the femtosecond laser. Cornea. 2006 Oct;25(9):1090–1092. doi: 10.1097/01.ico.0000228784.46463.e9.
18. Holzer MP, Rabsilber TM, Auffarth GU. Penetrating keratoplasty using femtosecond laser. Am J Ophthalmol. 2007 Mar;143(3):524–526. doi: 10.1016/j.ajo.2006.08.029.
19. Sarayba MA, Maguen E, Salz J, Rabinowitz Y, Ignacio TS. Femtosecond laser keratome creation of partial thickness donor corneal buttons for lamellar keratoplasty. J Refract Surg. 2007 Jan;23(1):58–65. doi: 10.3928/1081-597X-20070101-10.
20. Steinert RF, Ignacio TS, Sarayba MA. “Top hat”-shaped penetrating keratoplasty using the femtosecond laser. Am J Ophthalmol. 2007 Apr;143(4):689–691. doi: 10.1016/j.ajo.2006.11.043.
21. Malyugin BE, Borzenok SA, Nefedova ON, Gerasimov MYu. Limbal Epithelial Stem Cells Transplantation in Cases with Unilateral Limbal Stem Cell Deficiency Syndrome. Ophthalmology in Russia. 2023;20(4):601–609 (In Russ.). doi: 10.18008/1816-5095-2023-4-601-609.
22. Malyugin BE, Borzenok SA, Nefedova ON, Ostrovskii DS, Gerasymov MYu, Shatskikh AV. Experimental study of manual and femtosecond laser-assisted methods for cutting limbal mini-transplants. Fyodorov Journal of Ophthalmic Surgery. 2024;142(1):66–77 (In Russ.). doi: 10.25276/0235-4160-2024-1-66-77.
23. Nefedova ON, Malyugin BE, Borzenok SA, Gerasimov MYu, Ostrovsky DS, Shatskikh AV. Safety assessment of the femtosecond laser in corneal limbal graft excision. Russian Journal of Transplantology and Artificial Organs. 2023;25(4):160–173 (In Russ.). doi: 10.15825/1995-1191-2023-4-160-173.
24. Malyugin BE, Gerasymov MYu, Borzenok SA, Golovin AV. Simple limbal epithelial transplantation. Fyodorov Journal of Ophthalmic Surgery. 2019;142(1):66–77 (In Russ.). doi: 10.25276/0235-4160-2024-1-66-77.
25. Kim JH, Yum JH, Lee D, Oh SH. Novel technique of corneal biopsy by using a femtosecond laser in infectious ulcers. Cornea. 2008 Apr;27(3):363–365. doi: 10.1097/ICO.0b013e3181606070.
26. Riau AK, Liu Y-C, Lwin NC. Comparative study of nJ- and μJ- energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses. Invest Ophthalmol Vis Sci. 2014;55:3186–3194. doi: 10.1167/iovs.14-14434.
Review
For citations:
Malyugin B.E., Golovin A.V., Nefedova O.N., Müller F. Femtolaser Assisted Surgery of the First Stage of Keratoprosthesis. Results of the First Clinical Cases. Ophthalmology in Russia. 2025;22(1):200-206. (In Russ.) https://doi.org/10.18008/1816-5095-2025-1-200-206