The Relationship Between Cyclotorsion and Binocular Functions After Vision Correction with LASIK and SMILE: A Literature Review
https://doi.org/10.18008/1816-5095-2025-3-494-499
Abstract
Refractive surgeries have transformed vision correction, yet their effects on ocular dynamics — particularly cyclotorsion and binocular functions — require thorough examination. This review analyzes current evidence from PubMed, Google Scholar, and ResearchGate regarding the interaction between these factors following LASIK and SMILE procedures. Compensation of cyclotorsion is critical for optimal visual outcomes after LASIK and SMILE refractive surgeries. Promising solutions may include developments that include elliptical flap designs in LASIK (e.g. EAGLE Vision), improved cyclotorsion registration algorithms, and integration of artificial intelligence for real-time cyclotorsion compensation. While advanced LASIK tracking systems offer superior control of torsional movements, the valveless SMILE approach provides better preservation of corneal biomechanics and reduction of dry eye syndrome manifestations — key factors in the restoration of binocular functions.
About the Authors
T. Yu. ShilovaRussian Federation
Tatyana Yu. Shilova - MD, head of the Clinic.
Mosfilmovskaya str., 74B, Moscow, 119333
M. A. Shilova
Russian Federation
Maria А. Shilova – ophthalmologist.
Mosfilmovskaya str., 74B, Moscow, 119333
References
1. Shilova T.Yu., Shilova M.A. The Problem of Cyclotorsion in the Correction of Myopia and Myopic Astigmatism by the SMILE Method. Ophthalmology in Russia. 2025;22(1):24-28. https://doi.org/10.18008/1816-5095-2024-4-24-28
2. Gusenbauer M. Google Scholar to overshadow them all? Comparing the sizes of 12 Academic search engines and bibliographic databases. Scientometrics. 2019;118(1):177-214. doi: 10.1007/s11192-018-2958-52019.03.027.
3. Pedersen IB, Ivarsen A, Hjortdal J. Changes in Astigmatism, Densitometry, and Aberrations After SMILE for Low to High Myopic Astigmatism: A 12-Month Prospective Study. J Refract Surg. 2017 Jan 1;33(1):11-17. doi: 10.3928/1081597X-20161006-04.
4. Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011;95(3):335-339. doi: 10.1136/bjo.2009.174284.
5. Jiping Xu, Manli Liu, Quan Liu, Outcomes of astigmatic correction with and without two different cyclotorsion compensation methods in small incision lenticule extraction surgery, Photodiagnosis and Photodynamic Therapy. 2024;49:104272. doi: 10.1016/j.pdpdt.2024.104272.
6. Chan TC, Ng AL, Cheng GP, Wang Z, Ye C, Woo VC, Tham CC, Jhanji V. Vector analysis of astigmatic correction after small-incision lenticule extraction and femtosecond-assisted LASIK for low to moderate myopic astigmatism. Br J Ophthalmol. 2016 Apr;100(4):553-559. doi: 10.1136/bjophthalmol-2015-307238.
7. Zhang J, Wang Y, Chen X. Comparison of Moderate- to High-Astigmatism Corrections Using WaveFront-Guided Laser In Situ Keratomileusis and Small-Incision Lenticule Extraction. Cornea. 2016;35:523-530. doi: 10.1097/ICO.0000000000000782.
8. Khalifa MA, Ghoneim AM, Shaheen MS, Pinero DP. Vector analysis of astigmatic changes after small-incision lenticule extraction and wavefrontguided laser in situ keratomileusis. J Cataract Refract Surg. 2017;43:819-24. doi: 10.1016/j.jcrs.2017.03.033.
9. Kanellopoulos AJ. Topography-Guided LASIK Versus Small Incision Lenticule Extraction (SMILE) for Myopia and Myopic Astigmatism: A Randomized, Prospective, Contralateral Eye Study. J Refract Surg. 2017;33:306-312. doi: 10.3928/1081597X-20170221-01.
10. Alipour F, Veisi Hampa F, Ashrafi E, Dehghani S. Factors Influencing Cyclotorsion During Photorefractive Keratectomy. J Refract Surg. 2018 Feb 1;34(2):106-112. doi: 10.3928/1081597X-20171128-02.
11. Zhao F, Li L, Zhou W, Shi D, Fan Y, Ma L. Correlative factors' analysis of postural-related ocular cyclotorsion with image-guided system. Jpn J Ophthalmol. 2018 Mar;62(2):237-242. doi: 10.1007/s10384-017-0544-7.
12. Ozulken K, Ilhan C. Effects of Cyclotorsion Orientation and Magnitude in Eyes with Compound Myopic Astigmatism on the Compensation Capacity of WaveLight EX500 Photorefractive Keratectomy. Korean J Ophthalmol. 2019 Oct;33(5):458-466. doi: 10.3341/kjo.2019.0042.
13. Aslanides IM, Toliou G, Padroni S, Arba Mosquera S, Kolli S. The effect of static cyclotorsion compensation on refractive and visual outcomes using the Schwind Amaris laser platform for the correction of high astigmatism. Cont Lens Anterior Eye. 2011 Jun;34(3):114-120. doi: 10.1016/j.clae.2011.02.012.
14. Fahd DC, Jabbour E, Fahed CD. Static cyclotorsion measurements using the Schwind Amaris laser. Arq Bras Oftalmol. 2014 May-Jun;77(3):159-163. doi: 10.5935/00042749.20140041.
15. Arba-Mosquera S, Merayo-Lloves J, de Ortueta D. Clinical effects of pure cy-clotorsional errors during refractive surgery. Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4828-4836. doi: 10.1167/iovs.08-1766.
16. Yang YZ, Li FF, Wu SQ, Dai Q, Bao FJ, Cheng D, Zhu J, Ye YF.Comparison of myopic astigmatic correction after cross-assisted SMILE, FS-LASIK, and transPRK. J Cataract Refract Surg. 2023;49(12):1242-1248. doi: 10.1097/j.jcrs.0000000000001294.
17. LASIK platform Contoura (Alcon) chrome-extension: https://www.jnjvisionpro.com/en-us/products/idesign-refractive-studio/
18. iDesign LASIK Technology Platform. iDesign https://eyepress.ru/article/idesign-refractive-studio31-10-2023-0-32-17-819
19. Platform for SMIL VisuMax 800 technology https://vseosmile.ru/news/361-visu-max-800-smile-pro)
20. Mushkova IA, Kostenov SV, Sobolev NP, Gamidov GA. Comparative analysis of myopic astigmatism correction using SMILE technology with and without cyclotorsion. Ophthalmosurgery. 2020;1:18-25. doi: 10.25276/0235-4160-2020-1-18-25.
21. Yoon H, Magnago T, Yeom DJ. Three-month clinical outcomes to correct myopia or myopic astigmatism using a femtosecond laser for lenticule creation with automated centration and cyclotorsion compensation. J Refract Surg (Thorofare, NJ: 1995) 2024;40(1):e30-e41. doi: 10.3928/1081597X-20231212-03.
22. Sachdev GS, Patekar KB, Ramamurthy S. Comparative analysis of visual outcomes following small-incision lenticule extraction with or without cyclotorsion compensation in eyes with high astigmatism: contralateral eye study. Indian J Ophthalmol. 2023;71(6):2469-2473. doi: 10.4103/IJO.IJO_224_23.
23. Yang X, Liu Y, Xiao K, Song Q, Xu Y, Li J, Zhou Y. Effect of Cyclotorsion Compensation in Small Incision Lenticule Extraction Surgery for the Correction of Myopic Astigmatism: A Systematic Review and Meta-Analysis. Ophthalmol Ther. 2024 May;13(5):1271-1288. doi: 10.1007/s40123-024-00921-2.
24. Ganesh S, Brar S, Pawar A. Results of intraoperative manual cyclotorsion compensation for myopic astigmatism in patients undergoing small incision lenticule extraction (SMILE) J Refract Surg (Thorofare, NJ: 1995) 2017;33(8):506-512. doi: 10.3928/1081597X-20170328-01.
25. Kang DSY, Lee H, Reinstein DZ, Roberts CJ, Arba-Mosquera S, Archer TJ, Kim EK, Seo KY, Kim TIComparison of the distribution of lenticule decentration following SMILE by subjective patient fixation or triple marking centration. J Refract Surg (Thorofare, NJ: 1995) 2018;34(7):446-452. doi: 10.3928/1081597X-20180517-02.
26. Song J, Cao H, Chen X, Zhao X, Zhang J, Wu G, Wang Y.Small incision lenticule extraction (SMILE) versus laser assisted stromal in situ keratomileusis (LASIK) for astigmatism corrections: a systematic review and meta-analysis. Am J Ophthalmol. 2023;247:181-199. doi: 10.1016/j.ajo.2022.11.013.
27. Zhao X, Zhang L, Ma J, Li M, Zhang J, Zhao X, Wang Y.Comparison of wavefront-guided femtosecond LASIK and optimized SMILE for correction of moderate-to-high astigmatism. J Refract Surg (Thorofare, NJ: 1995) 2021;37(3):166-173. doi: 10.3928/1081597X-20201230-01.
28. Jimenez JR, Villa C, Anera RG, Gutierrez R, del Barco LJ. Binocular visual performance after LASIK. J Refract Surg. 2006 Sep;22(7):679-688. doi: 10.3928/1081-597X-20060901-09. PMID: 16995550.
29. Zhou Y, Ou Y, Chin MP, Zhao D, Zhang R. Transient change in the binocular visual function after femtosecond laser-assisted in situ keratomileusis for myopia patients. Indian J Ophthalmol. 2023 Feb;71(2):481-485. doi: 10.4103/ijo.IJO_1611_22.
30. Amini Vishteh R, Mirzajani A, Jafarzadehpur E, Taghieh A. Evaluation of visual evoked potential binocular summation after corneal refractive surgery. Doc Ophthalmol. 2020 Apr;140(2):181-188. doi: 10.1007/s10633-019-09731-5.
31. Xu Z, Dong S, Yu S Xu Z, Dong S, Yu S, Wu Y, Deng H, Zhao J. Evaluation of Early Accommodation Outcomes Following Femtosecond Laser-Assisted in situ Keratomileusis and Small Incision Lenticule Extraction. Semin Ophthalmol. 2025 Apr;40(3):196-203. doi: 10.1080/08820538.2024.2403439.
32. Wang Y, Guo Y, Li Y, Zhang Y, Yuan Y, Wu T, Chen Y, Li X. The impact of different corneal refractive surgeries on binocular dynamic visual acuity. Front Neurosci. 2023 Mar 3;17:1142339. doi: 10.3389/fnins.2023.1142339.
33. Gyldenkerne A, Ivarsen A, Nisted I, Hjortdal J. Impact on binocular visual function of small-incision lenticule extraction for high myopia. J Cataract Refract Surg. 2021 Apr 1;47(4):430-438. doi: 10.1097/j.jcrs.0000000000000480.
34. Chang J. Cyclotorsion during laser in situ keratomileusis. J Cataract Refract Surg. 2008 Oct;34(10):1720-1726. doi: 10.1016/j.jcrs.2008.06.027.
35. Febbraro JL, Koch DD, Khan HN, Saad A, Gatinel D. Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis. J Cataract Refract Surg. 2010 Oct;36(10):1718-1723. doi: 10.1016/j.jcrs.2010.05.019.
Review
For citations:
Shilova T.Yu., Shilova M.A. The Relationship Between Cyclotorsion and Binocular Functions After Vision Correction with LASIK and SMILE: A Literature Review. Ophthalmology in Russia. 2025;22(3):494-499. (In Russ.) https://doi.org/10.18008/1816-5095-2025-3-494-499