The Impact of e-Sports on Visual Function: A Systematic Review
https://doi.org/10.18008/1816-5095-2025-3-507-515
Abstract
e-Sports, recognized by the International Olympic Committee in 2017, is a rapidly growing discipline that requires high levels of visual endurance. However, despite the growing popularity of e-sports, scientific researches on its impact on the visual system remains limited. The aim of this systematic review was to analyze the existing data on the impact of e-sports on visual functions, identify key risk factors, and determine the gaps in current knowledge.
The study methodology followed the PRISMA principles. The search for publications was performed in Elibrary, PubMed/MED-LINE, Elsevier, and Springer Link databases using key terms related to esports and health. Of the 1069 articles initially identified, after excluding duplicates and manually screening according to the inclusion and exclusion criteria, 19 relevant studies published between 2005 and 2022 were included in the analysis. The studies were conducted by authors from 8 countries with a total sample size of 3191 people (2805 e-sports athletes and 386 people of the control group). The analysis showed that the most studied aspects of the visual system of e-sports athletes are oculomotor activity and visual-motor reactions, while basic parameters (visual acuity, contrast sensitivity, accommodation) remain virtually unexplored. Risks of visual fatigue, decreased blink rate, and dry eye syndrome have been identified, but the long-term effects of video game addiction and prevention methods remain unstudied. Some positive effects of gaming on the speed and accuracy of complex visual-motor reactions and reactions to a moving object, the speed of detecting objects in simple and complex visual search tasks have been noted. The analysis revealed significant gaps in research, including the lack of long-term observations, standardized protocols for assessing visual system strain, and a comparative analysis of e-sports athletes with other groups exposed to screen loads. The results highlight the need to develop standards for ophthalmological support of e-sports athletes and conduct further research aimed at the early diagnosis and prevention of visual impairment.
Keywords
About the Authors
S. V. ShutovaRussian Federation
Svetlana V. Shutova - PhD in Biology, senior lecturer; research officer.
Internatsionalnaya str., 33, Tambov, 392036; Rasskazovskoe highway, 1, Tambov, 392000
O. L. Fabrikantov
Russian Federation
Oleg L. Fabrikantov - MD, Professor, head of the Ophthalmological department; director.
Internatsionalnaya str., 33, Tambov, 392036; Rasskazovskoe highway, 1, Tambov, 392000
E. Yu. Fedorova
Russian Federation
Elena Yu. Fedorova - MD in Biology, senior lecturer, head of laboratory of the Institute of Natural Science and Sports Technologies.
2nd Selskohoziajstvenny travel, 4, Moscow, 129226
S. O. Kirillova
Russian Federation
Svetlana O. Kirillova – ophthalmologist.
Rasskazovskoe highway, 1, Tambov, 392000
References
1. DiFrancisco-Donoghue J, Werner WG, Douris P, Zwibel H. Esports players, got muscle? Competitive video game players’ physical activity, body fat, bone mineral content, and muscle mass in comparison to matched controls. Journal of sport and health science. 2022;11(6):725–730. doi: 10.1016/j.jshs.2020.07.006.
2. Zwibel H, DiFrancisco-Donoghue J, DeFeo A, Yao S. An osteopathic physician’s approach to the Esports athlete. Journal of Osteopathic Medicine. 2019;119(11):756– 762. doi: 10.7556/jaoa.2019.125.
3. Lindberg L, Nielsen SB, Damgaard M, Sloth OR, Rathleff MS, Straszek CL. Musculoskeletal pain is common in competitive gaming: a cross-sectional study among Danish esports athletes. BMJ Open Sport & Exercise Medicine. 2020;6(1):000799. doi: 10.1136/bmjsem-2020-000799.
4. Emara AK, Ng MK, Cruickshank JA, Kampert MW, Piuzzi NS, Schaffer JL, King D. Gamer’s health guide: optimizing performance, recognizing hazards, and promoting wellness in esports. Current sports medicine reports. 2020;19(12):537–545. doi: 10.1249/jsr.0000000000000787.
5. Behnke M, Kosakowski M, Kaczmarek LD. Social challenge and threat predict performance and cardiovascular responses during competitive video gaming. Psychology of Sport and Exercise. 2020;46:101584. doi: 10.1016/j.psych-sport.2019.101584.
6. ValladÃo SP, Middleton J, Andre TL. Esport: Fortnite acutely increases heart rate of young men. International journal of exercise science. 2020;13(6):1217. doi: 10.70252/zxzg4481.
7. Baiguzhina OV, Nikol’skaya OB, Komissarova OA, Perepelyukova EV, Fomina LB. The psychophysiological status of e-athletes (a review). Psychology. Psychophysiology. 2023;16(4):90–100 (In Russ.). doi: 10.14529/jpps230408.
8. Shulze J, Marquez M, Ruvalcaba O. The biopsychosocial factors that impact esports players’ well-being: A systematic review. Journal of Global Sport Management. 2023;8(2):478–502. doi: 10.1080/24704067.2021.1991828.
9. Fallon T, Heron N. A systematic review protocol of injuries and illness across all the competitive cycling disciplines, including track cycling, mountain biking, road cycling, time trial, cyclocross, gravel cycling, BMX freestyle, BMX racing, e-sport, para-cycling and artistic cycling. Frontiers in Sports and Active Living. 2024;6:1385832. doi: 10.21203/rs.3.rs-3909153/v1.
10. Williams D, Yee N, Caplan SE. Who plays, how much, and why? Debunking the stereotypical gamer profile. Journal of computer-mediated communication. 2008;13(4):993–1018. doi: 10.1111/j.1083-6101.2008.00428.x.
11. Kósa G, Feher G, Horvath L, Zadori I, Nemeskeri Z, Kovacs M, Fejes É, Meszaros J, Banko Z, Tibold A. Prevalence and risk factors of problematic internet use among Hungarian adult recreational esports players. International Journal of Environmental Research and Public Health. 2022;19(6):3204. doi: 10.3390/ijerph19063204.
12. DiFrancisco-Donoghue J, Balentine J, Schmidt G, Zwibel H. Managing the health of the eSport athlete: an integrated health management model. BMJ open sport & exercise medicine. 2019;5(1):e000467. doi: 10.1136/bmjsem-2018-000467.
13. Lee JW, Cho HG, Moon BY, Kim SY, Yu DS. Effects of prolonged continuous computer gaming on physical and ocular symptoms and binocular vision functions in young healthy individuals. Peer J. 2019;7:e7050. doi: 10.7717/peerj.7050.
14. Argilés M, Quevedo-Junyent L, Erickson G. Topical review: optometric considerations in sports versus E-sports. Perceptual and motor skills. 2022;129(3):731–746. doi: 10.1177/00315125211073401.
15. Castel AD, Pratt J, Drummond E. The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta psychologica. 2005;119(2):217–230. doi: 10.1016/j.actpsy.2005.02.004.
16. Li R, Polat U, Makous W, Bavelier D. Enhancing the contrast sensitivity function through action video game training. Nature neuroscience. 2009;12(5):549–551. doi: 10.1038/nn.2296.
17. Chisholm JD, Kingstone A. Improved top-down control reduces oculomotor capture: The case of action video game players. Attention, Perception, & Psychophysics. 2012;74:257–262. doi: 10.3758/s13414-011-0253-0.
18. West GL, Al-Aidroos N, Pratt J. Action video game experience affects oculomotor performance. Acta psychologica. 2013;142(1):38–42. doi: 10.1016/j.actpsy.2011.08.005.
19. Heimler B, Pavani F, Donk M, van Zoest W. Stimulus-and goal-driven control of eye movements: Action videogame players are faster but not better. Attention, Perception, & Psychophysics. 2014;76:2398–2412. doi: 10.3758/s13414-014-0736-x.
20. Chisholm JD, Kingstone A. Action video games and improved attentional control: Disentangling selection-and response-based processes. Psychonomic Bulletin & Review. 2015;22:1430–1436. doi: 10.3758/s13423-015-0818-3.
21. Strel’nikova GV, Strel’nikova IV, Yankin EL. Sensomotor and cognitive features of cyber sportsmen in different discipline. Science and sport: modern tendencies. 2016;12(3):64–69 (In Russ.).
22. Azizi E, Abel LA, Stainer MJ. The influence of action video game playing on eye movement behaviour during visual search in abstract, in-game and natural scenes. Attention, Perception, & Psychophysics. 2017;79:484–497. doi: 10.3758/s13414-016-1256-7.
23. Ding Y, Hu X, Li J, Ye J, Wang F, Zhang D. What makes a champion: the behavioral and neural correlates of expertise in multiplayer online battle arena games. International Journal of Human–Computer Interaction. 2018;34(8):682–694. doi: 10.1080/10447318.2018.1461761.
24. Talan AS, Talan MS. Application of tournament esports platform to analyze cognitive abilities of Counter-Strike and Dota 2 players. 2019;4:20–24 (In Russ.).
25. Benoit JJ, Roudaia E, Johnson T, Love T, Faubert J. The neuropsychological profile of professional action video game players. Peer J. 2020;8:e10211.
26. Schenk S, Bellebaum C, Lech RK, Heinen R, Suchan B. Play to win: action video game experience and attention driven perceptual exploration in categorization learning. Frontiers in Psychology. 2020;11:933. doi: 10.3389/fpsyg.2020.00933.
27. Yee A, Thompson B, Irving E, Dalton K. Athletes demonstrate superior dynamic visual acuity. Optometry and Vision Science. 2021;98(7):777–782. doi: 10.1097/opx.0000000000001734.
28. Surina-Marysheva EF, Belenkov AS, Erlikh VV, Cherepova IV, Burnashov YaV. Features of sensorimotor integration and lability of the nervous system in e-athletes. Human. Sport. Medicine. 2022;22(1):63–69 (In Russ.). doi: 10.14529/hsm220109
29. Delmas M, Caroux L, Lemercier C. Searching in clutter: Visual behavior and performance of expert action video game players. Applied Ergonomics. 2022;99:103628. doi: 10.1016/j.apergo.2021.103628.
30. Li J, Zhou Y, Gao X. The advantage for action video game players in eye movement behavior during visual search tasks. Current Psychology. 2022;41(12):8374–8383. doi: 10.1007/s12144-022-03017-x.
31. Jeong I, Nakagawa K, Osu R, Kanosue K. Difference in gaze control ability between low and high skill players of a real-time strategy game in esports. PloS one. 2022;17(3):e0265526. doi: 10.1371/journal.pone.0265526.
32. Chaiwiang N, Koo-Akarakul J. Digital Challenges: Investigating Computer Vision Syndrome in Thai Esports Through a Case-Control Approach. Clin Optom (Auckl). 2024 Jul 29;16:201–210. doi: 10.2147/OPTO.S460868.
33. Cardona G, Garcìa C, Serés C, Vilaseca M, Gispets J. Blink rate, blink amplitude, and tear film integrity during dynamic visual display terminal tasks. Current eye research. 2011;36(3):190–197. doi: 10.3109/02713683.2010.544442.
34. Tsubota K, Miyake M, Matsumoto Y, Shintani M. Visual protective sheet can increase blink rate while playing a hand-held video game. American journal of ophthalmology. 2002;133(5):704–705. doi: 10.1016/s0002-9394(02)01389-2.
35. Argilés M, Cardona G, Pérez-Cabré E, Rodrìguez M. Blink rate and incomplete blinks in six different controlled hard-copy and electronic reading conditions. Investigative ophthalmology & visual science. 2015;56(11):6679–6685. doi: 10.1167/iovs.15-16967.
36. Portello JK, Rosenfield M, Chu CA. Blink rate, incomplete blinks and computer vision syndrome. Optometry and vision science. 2013;90(5):482–487. doi: 10.1097/opx.0b013e31828f09a7.
37. Rosenfield M. Computer vision syndrome: a review of ocular causes and potential treatments. Ophthalmic and Physiological Optics. 2011;31(5):502–515. doi: 10.1111/j.1475-1313.2011.00834.x.
38. Turnbull PRK, Wong J, Feng J, Wang MTM, Craig JP. Effect of virtual reality head-set wear on the tear film: A randomised crossover study. Cont Lens Anterior Eye. 2019;42(6):640–645. doi: 10.1016/j.clae.2019.08.003.
39. Munsamy AJ, Paruk H, Gopichunder B, Luggya A, Majola T, Khulu S. The effect of gaming on accommodative and vergence facilities after exposure to virtual reality head-mounted display. Journal of optometry. 2020;13(3):163–170. doi: 10.1016/j.optom.2020.02.004.
40. Kang H, wang Yoo I, Lee JH, Hong H. Effect of application type on fatigue and visual function in viewing virtual reality (VR) device of Google cardboard type. J Korean Ophthalmic Opt Soc. 2017;22(3):221–228. doi: 10.14479/jkoos.2017.22.3.221.
41. Turnbull PRK, Phillips JR. Ocular effects of virtual reality headset wear in young adults. Scientific reports. 2017;7(1):16172. doi: 10.1038/s41598-017-16320-6.
42. Morse SE, Jiang BC. Oculomotor function after virtual reality use differentiates symptomatic from asymptomatic individuals. Optometry and vision science. 1999;76(9):637–642. doi: 10.1097/00006324-199909000-00021.
43. American Optometric Association. Computer vision syndrome. 2022. URL: https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/computer-vision-syndrome?sso=y (accessed 07.04.2025).
44. Ccami-Bernal F, Soriano-Moreno DR, Romero-Robles MA, Barriga-Chambi F, Tuco KG, Castro-Diaz SD,| Nuñez-Lupaca JN, Pacheco-Mendoza J, Galvez-Olortegui T., Benites-Zapata VA. Prevalence of computer vision syndrome: A systematic review and meta-analysis. Journal of optometry. 2024;17(1):100482. doi: 10.1016/j.optom.2023.100482.
45. Pavel IA, Bogdanici CM, Donica VC, Anton N, Savu B, Chiriac CP, Pavel CD, Salavastru SC. Computer Vision Syndrome: An Ophthalmic Pathology of the Modern Era. Medicina (Kaunas). 2023;59(2):412. doi: 10.3390/medicina59020412.
46. Lema AK, Anbesu EW. Computer vision syndrome and its determinants: A systematic review and meta-analysis. SAGE Open Med. 2022;9(10):20503121221142402. doi: 10.1177/20503121221142402.
47. Dye MWG, Green C, Bavelier D. Increasing speed of processing with action video games. Current directions in psychological science. 2009;18(6):321–326. doi: 10.1111/j.1467-8721.2009.01660.x.
48. Bavelier D, Achtman RL, Mani M, Föcker J. Neural bases of selective attention in action video game players. Vision research. 2012;61:132–143. doi: 10.1016/j.vis-res.2011.08.007.
49. Wu S, Spence I. Playing shooter and driving videogames improves top-down guidance in visual search. Attention, Perception, & Psychophysics. 2013;75:673–686. doi: 10.3758/s13414-013-0440-2.
50. Li L, Chen R, Chen J. Playing action video games improves visuomotor control. Psychological science. 2016;27(8):1092–1108. doi: 10.1177/0956797616650300.
51. Vedamurthy I, Nahum M, Huang SJ, Zheng F, Bayliss J, Bavelier D, Levi DM. A dichoptic custom-made action video game as a treatment for adult amblyopia. Vision research. 2015;114:173–187. doi: 10.1016/j.visres.2015.04.008.
Review
For citations:
Shutova S.V., Fabrikantov O.L., Fedorova E.Yu., Kirillova S.O. The Impact of e-Sports on Visual Function: A Systematic Review. Ophthalmology in Russia. 2025;22(3):507-515. (In Russ.) https://doi.org/10.18008/1816-5095-2025-3-507-515