On the Possibility of Using Artificial Intelligence in Medicine: From Theory to Practice
https://doi.org/10.18008/1816-5095-2025-4-725-731
Abstract
Modern life is inextricably linked with the latest technologies. Artificial intelligence (AI) poses a new challenge to humanity, the application of which affects all areas of life, including medicine. This article examines the potential application of AI in medical practice, particularly in ophthalmology. It presents an example of how AI can be used to determine risk factors for dry eye syndrome in patients undergoing cosmetic procedures in the periorbital area. It also analyzes the limitations of AI in medicine. An analysis of the literature demonstrates that the use of AI in scientific and medical practice has opened up a wide range of opportunities for conducting research at a new technological level, such as screening examinations, image-based diagnostics, and disease prediction; selection of optimal drug dosages; mitigating the threat of pandemics; and automation and precision of surgical interventions. When integrating AI technologies into medical practice, it’s important to consider a wide range of ethical issues, including potential breaches of confidentiality, transparency, and the reliability of information received. Frequent use of chatbots can lead to errors and the dequalification of physicians, especially those with limited clinical experience, as well as disruption of doctor-patient communication. Furthermore, it’s important to consider legal and forensic issues, primarily the question of who will bear responsibility for making decisions. Given the above, in our view, a personalized approach to treating each individual patient remains a priority in everyday clinical practice. This approach takes into account not only objective indicators but also anamnestic data, the body’s individual responses to treatment, and psycho-emotional aspects, as well as the physician’s fundamental knowledge and experience.
About the Authors
V. N. TrubilinRussian Federation
Trubilin Vladimir N. - МD, Professor, head of the Ophthalmology Department.
Volokolamskoye highway, 91, Moscow, 125371
E. G. Poluninа
Russian Federation
Poluninа Elizabet G. - MD, Professor, Professor of the Ophthalmology Department.
Volokolamskoye highway, 91, Moscow, 125371
V. V. Kurenkov
Russian Federation
Kurenkov Vyacheslav V. - МD, Professor, chief of Ophthalmology Clinic of Dr. Kurenkov.
Rublevskoe highway, 48, Moscow, 121609
A. V. Trubilin
Russian Federation
Trubilin Alexander. V. - PhD, Associate Professor of the Ophthalmology Department.
Volokolamskoye highway, 91, Moscow, 125371
E. V. Kechin
Russian Federation
Kechin Evgeny V. - PhD, head of the Department for Implementation of Innovation Programs, Transfer and Commercialization of Technologies.
Beskudnikovskiy Blvd, 59a, Moscow, 127486
E. A. Kasparova
Russian Federation
Kasparova Evgeniya A. - PhD, senior research officer.
Rossolimo str., 11A, B, Moscow, 119021
S. I. Arabadzhyan
Russian Federation
Arabadzhjan Sergey I. - PhD, Associate Professor of the Department of Reproductive Medicine, Clinical Embryology and Genetics.
Chapaevskaya str., 89, Samara, 443099
A. V. Filonenko
Russian Federation
Filonenko Alexandra V. - ophthalmic surgeon, head of the Ophthalmology Department.
Pavel Mochalov str., 8, Nizhny Novgorod, 603003
E. N. Ponomareva
Russian Federation
Ponomareva Elena N. ophthalmic surgeon, head of the Ophthalmology Department.
Orekhovy Blvd., bldg. 28, Moscow, 115682
M. A. Tsaregorodtseva
Russian Federation
Tsaregorodtseva Marina A. - ophthalmic surgeon.
Orekhovy Blvd., bldg. 28, Moscow, 115682
References
1. Khokholov AL, Zarubina TV, Kotlovsky MY, Pavlov AV, Potapov MP, Soldatova ON. Mechanisms for introduction of artificial intelligence in healthcare: new ethical challenges. Medical Ethics. 2024;3:4–10 (In Russ.). doi: 10.24075/medet.2024.018.
2. Lamotkin AI, Korabelnikov DI, Lamotkin IA. Artificial intelligence: basic terms and concepts, the application in healthcare and clinical medicine. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2024;17(3):409– 415 (In Russ.). doi: 10.17749/2070-4909/farmakoekonomika.2024.267.
3. Garri DD, Saakyan SV, Khoroshilova-Maslova IP, Tsygankov AYu, Nikitin OI, Tarasov GYu. Мethods of Machine Learning in Ophthalmology: Review. Ophthalmology in Russia. 2020;17(1):20–31 (In Russ.). doi: 10.18008/1816-5095-2020-1-20-31.
4. Zhu H. Big Data and Artificial Intelligence Modeling for Drug Discovery. Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:573–589. doi: 10.1146/annurev-pharmtox-010919-023324.
5. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021 Aug;25(3):1315–1360. doi: 10.1007/s11030-021-10217-3.
6. Tripathi MK, Nath A, Singh TP, Ethayathulla AS, Kaur P. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery. Mol Divers. 2021 Aug;25(3):1439–1460. doi: 10.1007/s11030-021-10256-w.
7. Kashyap K, Siddiqi MI. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents. Mol Divers. 2021 Aug;25(3):1517–1539. doi: 10.1007/s11030-021-10274-8.
8. Kumar P, Mahor A, Tomar R. Recent Development, Applications, and Patents of Artificial Intelligence in Drug Design and Development. Curr Drug Discov Technol. 2025;22(4):e15701638364199. doi: 10.2174/0115701638364199250123062248.
9. Gupta D, Wal P, Wal A, Sribhavani KR, Kumar M, Panda KC, Sharma MC. AI in Clinical Trials and Drug Development: Challenges and Potential Advancements. Curr Drug Discov Technol. 2025;22(4):e15701638314252. doi: 10.2174/0115701638314252241016165345.
10. Parvatikar PP, Patil S, Khaparkhuntikar K, Patil S, Singh PK, Sahana R, Kulkarni RV, Raghu AV. Artificial intelligence: Machine learning approach for screening large database and drug discovery. Antiviral Res. 2023 Dec;220:105740. doi: 10.1016/j.antiviral.2023.105740.
11. Luo X, Li Y, Xu J, Zheng Z, Ying F, Huang G. AI in Medical Questionnaires: Scoping Review. J Med Internet Res. 2025 Jun 23;27:e72398. doi: 10.2196/72398. Erratum in: J Med Internet Res. 2025 Aug 11;27:e80644. doi: 10.2196/80644.
12. Li F, Hu C, Luo X. Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis. Updates Surg. 2025 Jun 28. doi: 10.1007/s13304-025-02296-w. Epub ahead of print.
13. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations. Anesthesiology. 2020 Feb;132(2):379–394. doi: 10.1097/ALN.0000000000002960.
14. Uwimana A, Gnecco G, Riccaboni M. Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review. Comput Biol Med. 2025 Jan;184:109391. doi: 10.1016/j.compbiomed.2024.109391.
15. Leivaditis V, Maniatopoulos AA, Lausberg H, Mulita F, Papatriantafyllou A, Liolis E, Beltsios E, Adamou A, Kontodimopoulos N, Dahm M. Artificial Intelligence in Thoracic Surgery: A Review Bridging Innovation and Clinical Practice for the Next Generation of Surgical Care. J Clin Med. 2025 Apr 16;14(8):2729. doi: 10.3390/jcm14082729.
16. Aravazhi PS, Gunasekaran P, Benjamin NZY, Thai A, Chandrasekar KK, Kolanu ND, Prajjwal P, Tekuru Y, Brito LV, Inban P. The integration of artificial intelligence into clinical medicine: Trends, challenges, and future directions. Dis Mon. 2025 Jun;71(6):101882. doi: 10.1016/j.disamonth.2025.101882.
17. Theodore Armand TP, Nfor KA, Kim JI, Kim HC. Applications of Artificial Intelligence, Machine Learning, and Deep Learning in Nutrition: A Systematic Review. Nutrients. 2024 Apr 6;16(7):1073. doi: 10.3390/nu16071073.
18. Kassem H, Beevi AA, Basheer S, Lutfi G, Cheikh Ismail L, Papandreou D. Investigation and Assessment of AI’s Role in Nutrition-An Updated Narrative Review of the Evidence. Nutrients. 2025 Jan 5;17(1):190. doi: 10.3390/nu17010190.
19. Phalle A, Gokhale D. Navigating next-gen nutrition care using artificial intelligence-assisted dietary assessment tools-a scoping review of potential applications. Front Nutr. 2025 Jan 23;12:1518466. doi: 10.3389/fnut.2025.1518466.
20. Al-Dhubaibi MS, Mohammed GF, Atef LM, Bahaj SS, Al-Dhubaibi AM, Bukhari AM. Artificial Intelligence in Aesthetic Medicine: Applications, Challenges, and Future Directions. J Cosmet Dermatol. 2025 Jun;24(6):e70241. doi: 10.1111/jocd.70241.
21. Neroev VV, Zaytseva OV, Petrov SYu, Bragin AA. Artificial intelligence in ophthalmology: the present and the future. Russian Ophthalmological Journal. 2024;17(2):135– 141 (In Russ.). doi: 10.21516/2072-0076-2024-17-2-135-141.
22. Morya AK, Janti SS, Sisodiya P, Tejaswini A, Prasad R, Mali KR, Gurnani B. Everything real about unreal artificial intelligence in diabetic retinopathy and in ocular pathologies. World J Diabetes. 2022 Oct 15;13(10):822–834. doi: 10.4239/wjd.v13.i10.822.
23. Vinogradov AR, Dzhashi BG, Yuferov OV. Modern possibilities for optimizing the calculation of intraocular lens optical power using deep machine learning capabilities. Fyodorov journal of ophthalmic surgery. 2022;4S:138–145 (In Russ.). doi: 10.25276/0235-4160-2022-4S-138-145.
24. Lindegger DJ, Wawrzynski J, Saleh GM. Evolution and applications of artificial intelligence to cataract surgery. Ophthalmol Sci. 2022;2(3):100164. doi:10.1016/j.xops.2022.10016.
25. Rampat R, Deshmukh R, Chen X. Artificial intelligence in cornea, refractive surgery, and cataract: Basic principles, clinical applications, and future directions. Asia Pac J Ophthalmol (Phila). 2021;10(3):268–281. doi: 10.1097/APO.0000000000000394.
26. Siddiqui AA, Ladas JG, Lee JK. Artificial intelligence in cornea, refractive, and cataract surgery. Curr Opin Ophthalmol. 2020;31(4):253–260. doi: 10.1097/ICU.0000000000000673.
27. Trubilin АV, Poluninа EG, Trubilin VN, Zakatianskii VS. Prevention of Dry Eye Syndrome Before Phacoemulsification of Cataracts in Patients with a History of Cosmetic Procedures in the Periorbital Area. Ophthalmology in Russia. 2024;21(3):517–526 (In Russ.). doi: 10.18008/1816-5095-2024-3-517-526.
28. Jeyaraman M, Balaji S, Jeyaraman N, Yadav S. Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare. Cureus. 2023 Aug 10;15(8):e43262. doi: 10.7759/cureus.43262.
29. Choudhury A, Chaudhry Z. Large Language Models and User Trust: Consequence of Self-Referential Learning Loop and the Deskilling of Health Care Professionals. J Med Internet Res. 2024 Apr 25;26:e56764. doi: 10.2196/56764.
30. Stapleton P, Santucci J, Thet M, Lawrentschuk N, Dodds L, Cundy T, Sathianathen N. Quality of information on hypospadias from artificial intelligence chatbots: How safe is AI for patient and family information? J Pediatr Urol. 2025 Sep 2:S14775131(25)00457-7. doi: 10.1016/j.jpurol.2025.08.029.
31. Stapleton P, Santucci J, Cundy TP, Sathianathen N. Quality of Information on Wilms Tumor From Artificial Intelligence Chatbots: What Are Your Patients and Their Families Reading? Urology. 2025 Apr;198:130–134. doi: 10.1016/j.urology.2025.01.054.
32. Collin H, Tong C, Srinivas A, Pegler A, Allan P, Hagley D. Evaluating the role of AI chatbots in patient education for abdominal aortic aneurysms: a comparison of ChatGPT and conventional resources. ANZ J Surg. 2025 Apr;95(4):784–788. doi: 10.1111/ans.70053.
33. Martina S, Cannatà D, Paduano T, Schettino V, Giordano F, Galdi M. Reliability of Large Language Model-Based Chatbots Versus Clinicians as Sources of Information on Orthodontics: A Comparative Analysis. Dent J (Basel). 2025 Jul 24;13(8):343. doi: 10.3390/dj13080343.
34. Rossettini G, Bargeri S, Cook C, Guida S, Palese A, Rodeghiero L, Pillastrini P, Turolla A, Castellini G, Gianola S. Accuracy of ChatGPT-3.5, ChatGPT-4o, Copilot, Gemini, Claude, and Perplexity in advising on lumbosacral radicular pain against clinical practice guidelines: cross-sectional study. Front Digit Health. 2025 Jun 27;7:1574287. doi: 10.3389/fdgth.2025.1574287.
35. Metin U, Goymen M. Information from digital and human sources: A comparison of chatbot and clinician responses to orthodontic questions. Am J Orthod Dentofacial Orthop. 2025 Sep;168(3):348–357. doi: 10.1016/j.ajodo.2025.04.008.
36. Kular S, Kumar V. Artificial Intelligence Chatbots in Pediatric Emergencies: A Reliable Lifeline or a Risk? Cureus. 2025 Aug 1;17(8):e89234. doi: 10.7759/cureus.89234.
37. Wiegel NL, Mettini E. Ethical and cultural challenges posed by artificial intelligence (AI) in medical practice: multicultural analysis. Medical Ethics. 2024;3:11–15 (In Russ.). doi: 10.24075/medet.2024.015.
38. Beale SK, Cohen N, Secheli B, McIntire D, Kho KA. Comparing physician and artificial intelligence chatbot responses to posthysterectomy questions posted to a public social media forum. AJOG Glob Rep. 2025 Aug 5;5(3):100553. doi: 10.1016/j.xagr.2025.100553.
Review
For citations:
Trubilin V.N., Poluninа E.G., Kurenkov V.V., Trubilin A.V., Kechin E.V., Kasparova E.A., Arabadzhyan S.I., Filonenko A.V., Ponomareva E.N., Tsaregorodtseva M.A. On the Possibility of Using Artificial Intelligence in Medicine: From Theory to Practice. Ophthalmology in Russia. 2025;22(4):725-731. (In Russ.) https://doi.org/10.18008/1816-5095-2025-4-725-731




































