Preview

Ophthalmology in Russia

Advanced search

Algorithm for Calculating the Dioptric Power of an Optical Cylinder for the Optical Stage of Keratoprosthesis Implantation

https://doi.org/10.18008/1816-5095-2025-4-786-794

Abstract

Objective: to analyze the clinical and functional outcomes of the optical stage of keratoprosthesis implantation and to develop the machine learning model for calculating the optical cylinder power. Patients and methods. The study enrolled 90 patients (90 eyes) with burn injuries and terminal dystrophic corneal opacities who underwent the surgical treatment. The average age of the patients was 59.5 years (40.75; 70.5), of whom 65 were men and 25 were women. The patients underwent keratoprosthesis implantation in two stages. The first stage involved the implantation of the intralamellar plate into the corneal leucoma or corneal-prosthetic complex implantation. The second stage involved the implantation of the optical cylinder, which was selected considering axial length, total corneal leucoma thickness, the thickness of autograft covering and the presence or absence of the native lens/intraocular lens/lens-iris diaphragm.

Outcomes. Considering the results for the quality metrics (MAE and R2) and the achieved predictability within ±0.50 D in 30.0 % of cases and ±1.00 D in 50 % of cases on the test sample, it was decided to develop the model based on two features: axial length and total leucoma thickness. The model with two features demonstrated better quality than the model with one feature on the test sample across all quality metrics (MAE and R2) and the predictability within ±0.50 D and ±1.00 D, which were 30.0 % and 70.0 % respectively.

Conclusion. The linear regression model was developed to calculate the dioptric power of an optical cylinder based on the axial length and total leucoma thickness. It demonstrated predictability within ±1.00 D in 70.0 % of cases. Further observations are required to improve the model.

About the Authors

A. V. Golovin
S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Golovin Andrey V. - PhD, head of surgery unit.

Beskudnikovskiy Blvd., 59a, Moscow, 127486



V. R. Mantsova
S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Mantsova Valeriya R. postgraduate, ophthalmologist.

Beskudnikovskiy Blvd., 59a, Moscow, 127486



A. A. Troshina
S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Troshina Anna A. - PhD, ophthalmologist.

Beskudnikovskiy Blvd., 59a, Moscow, 127486



E. V. Kechin
S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Kechin Evgeniy V. - PhD, researcher of the Organizational and methodological department.

Beskudnikovskiy Blvd., 59a, Moscow, 127486



A. V. Proshko
S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Proshko Aleksandra V. - postgraduate, ophthalmologist.

Beskudnikovskiy Blvd., 59a, Moscow, 127486



References

1. Malyugin BE, Borzenok SA, Kovshun EV, Golovin AV, Shatskikh AV.Morphological changes in rabbit cornea after implantation of a new keratoprosthesis supporting plate. Russian Annals of Ophthalmology. 2020;136(5):7786.(In Russ.).

2. Grishchenko MV, Myasnikova VV, Nefedov DA. Keratoprostheses: from the past to the future. Russian Ophthalmological Journal. 2023;16(3):141–146 (In Russ.). doi: 10.21516/2072-0076-2023-16-3-141-146.

3. Avadhanam VS, Smith HE, Liu C. Keratoprostheses for corneal blindness: a review of contemporary devices. Clin Ophthalmol. 2015 Apr 16;9:697–720. doi: 10.2147/OPTH.S27083.

4. Kataev MG, Golovin AV, Nefedova ON, Trofimova IYu. Dependable covering of keratoprosthesis with temporal fascia autograft. Fyodorov Journal of Ophthalmic Surgery. 2024;2(139):43–51 (In Russ.). doi: 10.25276/0235-4160-2024-2-43-51.

5. Zarei-Ghanavati M, Avadhanam V, Vasquez Perez A, Liu C. The osteo-odontokeratoprosthesis. Curr Opin Ophthalmol. 2017 Jul;28(4):397–402. doi: 10.1097/ICU.0000000000000388.

6. Golovin AV, Borzenok SA, Latypov IA, Mantsova VR, Troshina AA, Proshko AV, Kechin E.V. Clinical and functional results of modified Fyodorov – Zuev keratoprosthesis intralamellar plate implantation in patients with corneal leucomas due to burns and severe forms of corneal dystrophies. Fyodorov Journal of Ophthalmic Surgery. 2025;2s(145): 136–146. doi: 10.25276/0235-4160-2025-2S-136-146 (In Russ.)

7. Hull CC, Liu CS, Sciscio A, Eleftheriadis H, Herold J. Optical cylinder designs to increase the field of vision in the osteo-odonto-keratoprosthesis. Graefes Arch Clin Exp Ophthalmol. 2000 Dec;238(12):1002–1008. doi: 10.1007/s004170000191.

8. Lee RM, Ong GL, Lam FC, White J, Crook D, Liu CS, Hull CC. Optical functional performance of the osteo-odonto-keratoprosthesis. Cornea. 2014 Oct;33(10):1038–1045. doi: 10.1097/ICO.0000000000000235.

9. Huang Y, Yu J, Liu L, Du G. Moscow eye microsurgery complex in Russia keratoprosthesis in Beijing Ophthalmology. Am. J. Ophthalmol. 2011;118(1):41–46. doi: 10.1016/j.ophtha.2010.05.019.

10. Moroz ZI, Zuev VK, Glazko VI. Comparative evaluation of three types of keratoprostheses implanted in burn leukomas. Optical reconstructive operations and alloplasty in ophthalmology. Moscow, 1974:39–43 (In Russ.).

11. Golovin AV, Troshina AA, Mantsova VR, Proshko AV. An integrated approach to the surgical treatment of cataracts in patients with vascular leukomas at various stages of keratoprosthesis. Fyodorov Journal of Ophthalmic Surgery. 2025;2(144):16–28 (In Russ.). doi: 10.25276/0235-4160-2025-2-16-28.

12. Harissi-Dagher M, Colby KA. Cataract extraction after implantation of a type I Boston keratoprosthesis. Cornea 2008;27:220–222. doi: 10.1097/ICO.0b013e31815b7d69.

13. Langenbucher A, Szentmary N, Speck A, Seitz B & Eppig T. Calculation of power and field of view of keratoprostheses. Ophthalmic Physiol Opt. 2013;33:412–419. doi: 10.1111/opo.12046.

14. Hille K, Hille A, Ruprecht KW. Medium term results in keratoprostheses with biocompatible and biological haptic. Graefes Arch Clin Exp Ophthalmol. 2006;244:696–704. doi: 10.1007/s00417-005-0092-6.

15. Utine CA, Tzu J, Dunlap K & Akpek EK. Visual and clinical outcomes of explantation versus preservation of the intraocular lens during keratoprosthesis implantation. J Cataract Refract Surg. 2011;37:1615–1622. doi: 10.1016/j.jcrs.2011.03.045.

16. Becken W, Altheimer H, Esser G, Mu€ller W & Uttenweiler D. Optical magnification matrix: near objects in the paraxial case. Optom Vis Sci. 2008;85:581–592. doi: 10.1097/OPX.0b013e31817db9f9.

17. Rosenblum WM, Christensen JL. Optical matrix method: optometric applications. Am J Optom Physiol Opt. 1974;51:9.


Review

For citations:


Golovin A.V., Mantsova V.R., Troshina A.A., Kechin E.V., Proshko A.V. Algorithm for Calculating the Dioptric Power of an Optical Cylinder for the Optical Stage of Keratoprosthesis Implantation. Ophthalmology in Russia. 2025;22(4):786-794. (In Russ.) https://doi.org/10.18008/1816-5095-2025-4-786-794

Views: 40


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)