Preview

Ophthalmology in Russia

Advanced search

Optical Coherence Tomography-angiography in the Diagnostics of Fundus Microcirculation in Patients in the Post-COVID Period

https://doi.org/10.18008/1816-5095-2025-4-847-852

Abstract

Purpose: tо study the retinal vessel density of the parafoveal and peripapillary zones and the optic disc area in patients in the postCOVID period using OCT-A.

Patients and methods: A total of 30 people (60 eyes) aged 18 to 82 (average 61.7 ± 14.2) years were examined at the Federal State Budgetary Institution “United Hospital and Polyclinic” of the Presidential Executive Office of the Russian Federation. All subjects had a history of a new coronavirus infection COVID-19 of varying severity, confirmed by a positive result for SARS-CoV-2 RNA by PCR. OCT-A was performed on an Optopol SOCT Copernicus REVO NX device (Poland).

Results. The vessel density of the superficial and deep retinal capillary plexus of the parafoveal zone in all quadrants (nasal, inferior, temporal and superior) was significantly lower compared to the normal values of the corresponding zones (p < 0.001). A significant decrease in the microcirculation parameters of all studied optic disc parameters was proven compared to normal values (p < 0.001). At the same time, the vascular bed density inside the optic disc was the lowest, amounting to 29.6 ± 5.6 % for the right eye and 27.9 ± 6.4 % for the left, which was significantly lower than the normal values of 52.9 ± 3.6 %, p < 0.001.

Conclusion. The studies conducted using OCT-A proved microcirculatory fundus’ changes in patients after a new coronavirus infection. Thus, a significant decrease in the vascular density was revealed both in the retina’s parafoveal and peripapillary zones, as well as in the optic nerve head area, which may indicate the development of preclinical maculopathy and optic neuropathy. The obtained data made it possible to continue the studies initiated in order to develop and apply rehabilitation measures at the initial stages of the disease.

About the Authors

Ya. V. Dorofeeva
United Hospital with a Polyclinic of the Presidential Executive Office of the Russian Federation
Russian Federation

Dorofeeva Yana V. – ophthalmologist.

Michurinsky ave., 6, Moscow, 119285



E. B. Myakoshina
United Hospital with a Polyclinic of the Presidential Executive Office of the Russian Federation
Russian Federation

Myakoshina Elena B. - MD, ophthalmologist.

Michurinsky ave., 6, Moscow, 119285



References

1. Neroev VV, Kiseleva TN, Eliseeva EK. Ophthalmological aspects of coronavirus infection. Russian Ophthalmological Journal. 2021;14(1):7–14 (In Russ.). doi: 10.21516/2072-0076-2021-14-1-7-14.

2. Kurysheva NI, Evdokimova OA, Nikitina AD. Visual organ damage in COVID-19. Part 2: complications from the posterior segment of the eye, neuro-ophthalmological manifestations, vaccination and risk factors. Russian Ophthalmological Journal. 2023;16(1):157–167 (In Russ.). doi: 10.21516/2072-0076-2023-16-1-157-167.

3. Venkatesan P. NICE guideline on long COVID. Lancet Respir Med. 2021;9(2):129. doi: 10.1016/S2213-2600(21)00031-X.

4. Vinci R, Pedicino D, Andreotti F, Russo G, D’Aiello A, De Cristofaro R, Crea F, Liuzzo G. From angiotensin-converting enzyme 2 disruption to thromboinflammatory microvascular disease: A paradigm drawn from COVID-19. Int J Cardiol. 2021; 1;326:243–247. doi: 10.1016/j.ijcard.2020.11.016.

5. Martynov MYu, Bogolepova AN, Yasamanova AN. Endothelial dysfunction in COVID-19 and cognitive impairment. Korsakov Journal of Neurology and Psychiatry. 2021;121(6):93–99 (In Russ.). doi: 10.17116/jnevro202112106193.

6. Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, Bailey ST, Huang D. Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016; 1;57(9):OCT27-36. doi: 10.1167/iovs.15-19043.

7. Myakoshina EB, Saakyan SV. Features of visual functions, their correlation with OCT angiography parameters of the macula in patients with initial choroidal melanoma. Clinical ophthalmology. 2022;22(4):216–223 (In Russ.). doi: 10.32364/23117729-2022-22-4-216-223.

8. Ding X, Romano F, Garg I, Gan J, Vingopoulos F, Garcia MD, Overbey KM, Cui Y, Zhu Y, Bennett CF, Stettler I, Shan M, Finn MJ, Vavvas DG, Husain D, Patel NA, Kim LA, Miller JB. Expanded Field OCT Angiography Biomarkers for Predicting Clinically Significant Outcomes in Non-Proliferative Diabetic Retinopathy. Am J Ophthalmol. 2024; 28;270:216–226. doi: 10.1016/j.ajo.2024.10.016.

9. Sarraf D, Rahimy E, Fawzi AA, Sohn E, Barbazetto I, Zacks DN, Mittra RA, Klancnik JM Jr, Mrejen S, Goldberg NR, Beardsley R, Sorenson JA, Freund KB. Paracentral acute middle maculopathy: a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia. JAMA Ophthalmol. 2013;131(10):1275–1287. doi: 10.1001/jamaophthalmol.2013.4056.

10. Nemiroff J, Kuehlewein L, Rahimy E, Tsui I, Doshi R, Gaudric A, Gorin MB, Sadda S, Sarraf D. Assessing Deep Retinal Capillary Ischemia in Paracentral Acute Middle Maculopathy by Optical Coherence Tomography Angiography. Am J Ophthalmol. 2016;162:121–132.e1. doi: 10.1016/j.ajo.2015.10.026.

11. Sridhar J, Shahlaee A, Shieh WS, Rahimy E. Paracentral acute middle maculopathy associated with retinal artery occlusion after cosmetic filler injection. Retin Cases Brief Rep. 2017;Winter;11 Suppl 1:S216–S218. doi: 10.1097/ICB.0000000000000466.

12. Ilginis T, Keane PA, Tufail A. Paracentral acute middle maculopathy in sickle cell disease. JAMA Ophthalmol. 2015;133(5):614–616. doi: 10.1001/jamaophthalmol.2014.6098.

13. Gascon P, Briantais A, Bertrand E, Ramtohul P, Comet A, Beylerian M, Sauvan L, Swiader L, Durand JM, Denis D. Covid-19-Associated Retinopathy: A Case Report. Ocul Immunol Inflamm. 2020; 16;28(8):1293–1297. doi: 10.1080/09273948.2020.1825751.

14. Hassan M, Sadiq MA, Halim MS, Afridi R, Soliman MK, Sarwar S, Agarwal A, Do DV, Nguyen QD, Sepah YJ. Evaluation of macular and peripapillary vessel flow density in eyes with no known pathology using optical coherence tomography angiography. Int J Retina Vitreous. 2017;31(3):27. doi: 10.1186/s40942-017-0080-0.

15. Sheremet NL, Shmelkova MS, Andreeva NA, Zhorzholadze NV, Fomin AV, Krylova TD, Tsygankova PG. Characteristics of changes in retinal and optic nerve microvascularisature in Leber hereditary optic neuropathy patients seen with optical coherence tomography angiography. Russian Annals of Ophthalmology. 2020;136(4):171–182 (In Russ). doi: 10.17116/oftalma2020136042171.

16. Spagnolo P, Balestro E, Aliberti S, Cocconcelli E, Biondini D, Casa GD, Sverzellati N, Maher TM. Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med. 2020;8(8):750–752. doi: 10.1016/S2213-2600(20)30222-8.

17. Bertoli F, Veritti D, Danese C, Samassa F, Sarao V, Rassu N, Gambato T, Lanzetta P.Ocular Findings in COVID-19 Patients: A Review of Direct Manifestations and Indirect Effects on the Eye. J Ophthalmol. 2020; 27;2020:4827304. doi: 10.1155/2020/4827304.

18. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570.

19. Cennamo G, Reibaldi M, Montorio D, D’Andrea L, Fallico M, Triassi M. Optical Coherence Tomography Angiography Features in Post-COVID-19 Pneumonia Patients: A Pilot Study. Am J Ophthalmol. 2021;227:182–190. doi: 10.1016/j.ajo.2021.03.015.

20. Savastano A, Crincoli E, Savastano MC, Younis S, Gambini G, De Vico U, Cozzupoli GM, Culiersi C, Rizzo S, Gemelli Against Covid-Post-Acute Care Study Group. Peripapillary Retinal Vascular Involvement in Early Post-COVID-19 Patients. J Clin Med. 2020;9(9):2895. doi: 10.3390/jcm9092895.

21. Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, Flores-Martinez YM, VillegasRojas MM, León-Aguilar AM, Martínez-Gómez PA, Campa-Córdoba BB, ApátigaPérez R, Corniel-Taveras CN, Dominguez-García JJ, Blanco-Alvarez VM, LunaMuñoz J. Elucidating the Neuropathologic Mechanisms of SARS-CoV-2 Infection. Front Neurol. 2021;12;12:660087. doi: 10.3389/fneur.2021.660087.

22. Dewanjee S, Vallamkondu J, Kalra RS, Puvvada N, Kandimalla R, Reddy PH. Emerging COVID-19 Neurological Manifestations: Present Outlook and Potential Neurological Challenges in COVID-19 Pandemic. Mol Neurobiol. 2021;58(9):4694–4715. doi: 10.1007/s12035-021-02450-6.

23. Turgel VA, Tultseva SN. Dynamics of retinal perfusion parameters in patients with post-COVID syndrome. Ophthalmological Journal. 2023;16(3):53–62 (In Russ.). doi: 10.17816/OV569005.

24. Yip VCH, Wong HT, Yong VKY, Lim BA, Hee OK, Cheng J, Fu H, Lim C, Tay ELT, Loo-Valdez RG, Teo HY, Lim Ph A, Yip LWL. Optical Coherence Tomography Angiography of Optic Disc and Macula Vessel Density in Glaucoma and Healthy Eyes. J Glaucoma. 2019;28(1):80–87. doi: 10.1097/IJG.0000000000001125.

25. Vinci R, Pedicino D, Andreotti F, Russo G, D’Aiello A, De Cristofaro R, Crea F, Liuzzo G. From angiotensin-converting enzyme 2 disruption to thromboinflammatory microvascular disease: A paradigm drawn from COVID-19. Int J Cardiol. 2021; 1;326:243–247. doi: 10.1016/j.ijcard.2020.11.016.

26. Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, Su X, Cao B. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;9(395(10235)):1517–1520. doi: 10.1016/S0140-6736(20)30920-X.

27. Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J. 2022;479(4):537–559. doi: 10.1042/BCJ20220016.


Review

For citations:


Dorofeeva Ya.V., Myakoshina E.B. Optical Coherence Tomography-angiography in the Diagnostics of Fundus Microcirculation in Patients in the Post-COVID Period. Ophthalmology in Russia. 2025;22(4):847-852. (In Russ.) https://doi.org/10.18008/1816-5095-2025-4-847-852

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)