Preview

Ophthalmology in Russia

Advanced search

Comparison of Biometric Parameters in Standard and Segmental Optical Biometry

https://doi.org/10.18008/18165095-2025-4-853-865

Abstract

Optical biometry is widely used in ophthalmology for different purposes. The Argos (Alcon, USA) device, which recently entered the Russian market, uses different refractive indices for different eye structures. This feature fundamentally distinguishes it from other models. The issue of its comparability with other biometers in the Russian population has not been researched sufficiently.

Purpose. To compare keratometry in the flat (K1) and steep (K2) meridians, mean keratometry (Km), axial length (AL), anterior chamber depth (ACD), lens thickness (LT), white-to-white (WTW) and the frequency of relevant AL measurement between the Argos and IOLMaster 700 devices.

Patients and methods. Two hundred fifty-one patients (368 eyes) were included in the study regardless of the presence of cataract: 244 females (66.3 %) and 124 males (33.7 %). The mean age was 68.18 ± 13.36 years (24–92 years). The exclusion criteria were: unstable visual fixation, pseudophakia, aphakia, history of vitrectomy, the difference between the dates of biometry on the Argos and IOLMaster 700 more than 1 month. Clinical significance of the differences was assessed using Bland-Altman plots and 95 % limits of agreement (95 % LoA). Results. The frequency of relevant AL measurements was 100 % on the Argos, and 99.2 % on the IOLMaster 700 (p = 0.25). The K1, K2, Km, ACD, LT and WTW measurements were significantly higher on the Argos compared to the IOLMaster 700. AL did not differ significantly only in the range of 22.0–23.0 mm. At AL < 22.0 mm this parameter was significantly higher on the Argos, at AL > 23.0 mm — on the IOLMaster 700. The more was the AL deviation from the range of 22.0–23.0 mm, the greater was the difference in AL between the two biometers. The difference in ACD was inversely proportional to the magnitude of ACD. Strong correlations were found for all studied parameters on the two biometers, however, 95 % LoA were wide.

Conclusion. The differences in keratometry, AL, ACD, LT and WTW between the Argos and IOLMaster 700 are clinically significant and therefore this biometers cannot be considered interchangeable in all clinical situations.

About the Authors

К. B. Pershin
“Eximer” Eye Center; Academy of Postgraduate Education of The Federal Medical-Biological Agency
Russian Federation

Pershin Kirill B. - MD, Professor, medical director, Ophthalmology Faculty Professor.

Marksistskaya str., 3/1, Moscow, 109147; Volokolamskoe highway, 91, Moscow, 125371



N. F. Pashinova
“Eximer” Eye Center; Academy of Postgraduate Education of The Federal Medical-Biological Agency
Russian Federation

Pashinova Nadezhda F. - MD, Professor, chief physician, Ophthalmology Faculty Professor.

Marksistskaya str., 3/1, Moscow, 109147; Volokolamskoe highway, 91, Moscow, 125371



A. Yu. Tsygankov
“Eximer” Eye Center
Russian Federation

Tsygankov Alexander Yu. - PhD, scientific advisor, ophthalmologist.

Marksistskaya str., 3/1, Moscow, 109147



A. A. Panov
“Eximer” Eye Center; Academy of Postgraduate Education of The Federal Medical-Biological Agency
Russian Federation

Panov Andrey A. - ophthalmologist, postgraduate student.

Marksistskaya str., 3/1, Moscow, 109147; Volokolamskoe highway, 91, Moscow, 125371



References

1. Yu J, Wen D, Zhao J, Wang Y, Feng K, Wan T, Savini G, McAlinden C, Lin X, Niu L, Chen S, Gao Q, Ning R, Jin Y, Zhou X, Huang J. Comprehensive comparisons of ocular biometry: A network-based big data analysis. Eye and Vis. 2023;10(1):1. doi: 10.1186/s40662-022-00320-3.

2. Micheletti JM, Hall B. Assessment of measurement variability across automated biometry devices. J Cataract Refract Surg. 2025;51(2):156–160. doi: 10.1097/j.jcrs.0000000000001583.

3. Bergmanson JP, Martinez JG. Size does matter: what is the corneo‐limbal diameter? Clinical and Experimental Optometry. 2017;100(5):522–528. doi: 10.1111/cxo.12583.

4. Kato Y, Ayaki M, Tanaka Y, Tamaoki A, Sakai Y, Ichikawa K, Ichikawa K. Comparison of accuracy and axial length acquisition success rate by three types of sweptsource OCT-based biometers. J Cataract Refract Surg. 2024;51(4):287–293. doi: 10.1097/j.jcrs.0000000000001601

5. Tamaoki A, Kojima T, Hasegawa A, Yamamoto M, Kaga T, Tanaka K, Ichikawa K. Evaluation of Axial Length Measurement Using Enhanced Retina Visualization Mode of the Swept-Source Optical Coherence Tomography Biometer in Dense Cataract. Ophthalmic Res. 2021;64(4):595–603. doi: 10.1159/000515054.

6. Sabatino F, Matarazzo F, Findl O, Maurino V. Comparative analysis of 2 sweptsource optical coherence tomography biometers. Journal of Cataract and Refractive Surgery. 2019;45(8):1124–1129. doi: 10.1016/j.jcrs.2019.03.020.

7. Jin A, Han X, Zhang J, Qiu X, Zhang Y, Qu B, Tan X, Luo L. Agreement of Total Keratometry and Posterior Keratometry Among IOLMaster 700, CASIA2, and Pentacam. Trans Vis Sci Tech. 2023;12(3):13. doi: 10.1167/tvst.12.3.13.

8. Montés-Micó R, Pastor-Pascual F, Ruiz-Mesa R, Tañá-Rivero P. Ocular biometry with swept-source optical coherence tomography. J Cataract Refract Surg. 2021;47(6):802–814. doi: 10.1097/j.jcrs.0000000000000551.

9. Tañá-Rivero P, Aguilar-Córcoles S, Tañá-Sanz P, Tañá-Sanz S, Montés-Micó R. Axial length acquisition success rates and agreement of four optical biometers and one ultrasound biometer in eyes with dense cataracts. Eye and Vis. 2023;10(1):35. doi: 10.1186/s40662-023-00352-3.

10. https://docs.nevacert.ru/files/med_reestr_v2/9319_instruction.pdf

11. Omoto MK, Torii H, Masui S, Ayaki M, Tsubota K, Negishi K. Author Correction: Ocular biometry and refractive outcomes using two swept-source optical coherence tomography-based biometers with segmental or equivalent refractive indices. Sci Rep. 2020;10(1):13181. doi: 10.1038/s41598-020-69871-6.

12. Porwolik M, Porwolik A, Mrukwa-Kominek E. Evaluation of Selected Biometric Parameters in Cataract Patients—A Comparison between Argos® and IOLMaster 700®: Two Swept-Source Optical Coherence Tomography-Based Biometers. Medicina. 2024;60(7):1057. doi: 10.3390/medicina60071057.

13. https://docs.nevacert.ru/files/med_reestr_v2/70602_instruction.pdf

14. Morina NA, Maiorova AM, Agafonov SG. Comprasion of ocular biometry measurements by IOLMaster 700 and LENSTAR LS 900. Modern technologies in ophthalmology. 2019;4:181–184 (In Russ.). doi: 10.25276/2312-4911-2019-4-181-184.

15. Yang CM, Lim DH, Kim HJ, Chung TY. Comparison of two swept-source optical coherence tomography biometers and a partial coherence interferometer. PLoS ONE. 2019;14(10):e0223114. doi: 10.1371/journal.pone.0223114.

16. Multack S, Plummer N, Marneris A, Hall B. A Retrospective Trial Comparing Prediction Accuracy of Three Biometers in Short, Medium, and Long Eyes. Clin Ophthalmol. 2025;19:577–583. doi: 10.2147/OPTH.S487889.

17. Huang J, Chen H, Li Y, Chen Z, Gao R, Yu J, Zhao Y, Lu W, McAlinden C, Wang Q. Comprehensive Comparison of Axial Length Measurement With Three SweptSource OCT-Based Biometers and Partial Coherence Interferometry. J Refract Surg. 2019;35(2):115–120. doi: 10.3928/1081597X-20190109-01.

18. Multack S, Pan LC, Timmons SK, Datar M, Hsiao CW, Babu R, Pan SM, Woodard L. Impact of a Swept Source-Optical Coherence Tomography Device on Efficiency in Cataract Evaluation and Surgery: A Time-and-Motion Study. Clin Ophthalmol. 2023;17:1–13. doi: 10.2147/OPTH.S384545.

19. Tamaoki A, Kojima T, Hasegawa A, Yamamoto M, Kaga T, Tanaka K, Ichikawa K. Clinical Evaluation of a New Swept-Source Optical Coherence Biometer That Uses Individual Refractive Indices to Measure Axial Length in Cataract Patients. Ophthalmic Res. 2019;62(1):11–23. doi: 10.1159/000496690.

20. Melendez RF, Smits G, Nguyen T, Ruffaner-Hanson CD, Ortiz D, Hall B. Comparison of Astigmatism Prediction Accuracy for Toric Lens Implantation from Two Swept-Source Optical Coherence Tomography Devices. Clin Ophthalmol. 2022;16:3795–3802. doi: 10.2147/OPTH.S378019.

21. Montés-Micó R. Evaluation of 6 biometers based on different optical technologies. J Cataract Refract Surg. 2022;48(1):16–25. doi: 10.1097/j.jcrs.0000000000000690.

22. Pershin KB, Pashinova NF, Tsygankov AYu, Panov AA. First experience of using segmental optical biometry for IOL power calculation in the Russian Federation. Ophthalmology in Russia. 2025;22(3):582–588 (In Russ.). doi: 10.18008/18165095-2025-3-582-588.

23. Savini G, Hoffer KJ, Carballo L, Taroni L, Schiano-Lomoriello D. Comparison of different methods to calculate the axial length measured by optical biometry. J Cataract Refract Surg. 2022;48(6):685–689. doi: 10.1097/j.jcrs.0000000000000821.

24. Wang J, Yin LR. The Application of Enhanced Depth Imaging Spectral-Domain Optical Coherence Tomography in Macular Diseases. Journal of Ophthalmology. 2020;2020:1–7. doi: 10.1155/2020/9503795.

25. Multack S, Plummer N, Smits G, Hall B. Randomized Trial Comparing Prediction Accuracy of Two Swept Source Optical Coherence Tomography Biometers. Clin Ophthalmol. 2023;17:2423–2428. doi: 10.2147/OPTH.S407538.

26. Utine CA, Ayhan Z, Durmaz Engin C. Effect of intracorneal ring segment implantation on corneal asphericity. Int J Ophthalmol. 2018;11(8):1303–1307. doi: 10.18240/ijo.2018.08.09.

27. Shi Q, Wang GY, Cheng YH, Pei C. Comparison of IOL-Master 700 and IOL-Master 500 biometers in ocular biological parameters of adolescents. Int J Ophthalmol. 2021;14(7):1013–1017. doi: 10.18240/ijo.2021.07.08.

28. Huang J, Savini G, Wu F, Yu X, Yang J, Yu A, Yu Y, Wang Q. Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer. Journal of Cataract and Refractive Surgery. 2015;41(10):2233–2241. doi: 10.1016/j.jcrs.2015.10.062.

29. Pershin KB, Pashinova NF, Tsygankov AYu, Legkikh SL, Afaunova ZKh. Partial coherence laser interferometry and immersion ultrasonography for IOL power calculations in myopia. Cataract and refractive surgery. 2017;17(1):10–16 (In Russ.).


Review

For citations:


Pershin К.B., Pashinova N.F., Tsygankov A.Yu., Panov A.A. Comparison of Biometric Parameters in Standard and Segmental Optical Biometry. Ophthalmology in Russia. 2025;22(4):853-865. (In Russ.) https://doi.org/10.18008/18165095-2025-4-853-865

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)