Proteomic Analysis of Normal Lacrimal Fluid: Identification of Major and Unique Proteins (Clinical and Experimental Study)
https://doi.org/10.18008/1816-5095-2025-4-894-900
Abstract
The protein composition of lacrimal fluid changes in various pathological conditions, making it a promising biomarker for the diagnosis of ophthalmic and systemic diseases. Modern methods of lacrimal fluid analysis include chromatography and mass spectrometry, which ensure highly accurate identification and quantification of proteins, serving as indispensable tools for proteome studies. The aim of this study was to investigate the protein composition of lacrimal fluid using mass spectrometry in 5 healthy volunteers, identify the main components and unique proteins, and analyze their significance for the diagnosis and treatment of ophthalmic diseases.
Keywords
About the Authors
L. R. TakhauovaRussian Federation
Takhauova Liliya R. junior researcher, postgraduate.
Moscow tract, 2, Tomsk, 634050; Chekist Lane, 2/7, Seversk, Tomsk Region, 636039
O. I. Krivosheina
Russian Federation
Krivosheina Olga I. - MD, Professor, head of the Ophthalmology Department. Chekist Lane, 2/7, Seversk, Tomsk Region, 636039
V. N. Lazarev
Russian Federation
Lazarev Vasily N. - Doctor of biological sciences, Associate Professor, head of the Genetic Engineering Laboratory.
Krasnogorskoye highway, 15, Odintsovo, Moscow Region, 143007
I. P. Smirnov
Russian Federation
Smirnov Igor P. - Candidate of chemical sciences, senior researcher.
Krasnogorskoye highway, 15, Odintsovo, Moscow Region, 143007
R. M. Takhauov
Russian Federation
Takhauov Ravil M. - MD, Professor, director of the Siberian Biophysical Research Center.
Moscow tract, 2, Tomsk, 634050; Chekist Lane, 2/7, Seversk, Tomsk Region, 636039
A. R. Takhauov
Russian Federation
Takhauov Anas R. - junior researcher.
Moscow tract, 2, Tomsk, 634050
References
1. MaJ YW, Utheim TP, Reppe S, Galtung HK, Aass HC, Eriksen HO. Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases. Int J Mol Med. 2021;47(5):1–15. doi: 10.3892/ijmm.2021.4916.
2. Ponzini E, Santambrogio C, De Palma A, Mauri P, Grandori R. Mass spectrometrybased tear proteomics for noninvasive biomarker discovery. Mass Spectrom Rev. 2022;41(5):842–860. doi: 10.1002/mas.21691.
3. Mann A, Tighe B. Clinical and biochemical analysis of the ageing tear film. Br J Ophthalmol. 2020;104(7):1028–1032. doi: 10.1136/bjophthalmol-2018-313760.
4. Willcox MD, Argüeso P, Georgiev GA, Holopainen JM, Laurie GW, Millar TJ. TFOS DEWS II tear film report. Ocul Surf. 2017;15(3):366–403. doi: 10.1016/j.jtos.2017.03.006.
5. Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmology. 2017;124(11S):S4–S13. doi: 10.1016/j.ophtha.2017.07.010.
6. Dartt DA, Willcox MD. Complexity of the tear film: importance in homeostasis and dysfunction during disease. Exp Eye Res. 2013;117:1–18. doi: 10.1016/j.exer.2013.10.008.
7. Dor M, Eperon S, Lalive PH, Oberic A, Boehnke M, Hamedani M. Investigation of the global protein content from healthy human tears. Exp Eye Res. 2019;179:64–74. doi: 10.1016/j.exer.2018.10.006.
8. Akkurt M, Korsiak J, Gurdal C, Papan C, Kocabora SM, Uzun S. Profiling tear film enzymes reveals major metabolic pathways involved in the homeostasis of the ocular surface. Sci Rep. 2023;13(1):15231. doi: 10.1038/s41598-023-42104-2.
9. Rentka A, Koroskenyi K, Harsfalvi J, Szekanecz Z, Szucs G, Kemeny-Beke A. Evaluation of commonly used tear sampling methods and their relevance in subsequent biochemical analysis. Ann Clin Biochem. 2017;54(5):521–529. doi: 10.1177/0004563217695843.
Review
For citations:
Takhauova L.R., Krivosheina O.I., Lazarev V.N., Smirnov I.P., Takhauov R.M., Takhauov A.R. Proteomic Analysis of Normal Lacrimal Fluid: Identification of Major and Unique Proteins (Clinical and Experimental Study). Ophthalmology in Russia. 2025;22(4):894-900. (In Russ.) https://doi.org/10.18008/1816-5095-2025-4-894-900




































