Preview

Ophthalmology in Russia

Advanced search

The Importance of Nutraceutical Support According to the AREDS2 Protocol in Age-related Macular Degeneration. Clinical observation

https://doi.org/10.18008/1816-50952025-4-919-929

Abstract

Carotenoids, which are part of macular pigment, play a key role in maintaining visual functions. Age-related changes in the visual organ necessitate increased intake of vitamins and minerals to slow down degenerative processes in the retina. Vitamin and mineral complexes (VMC) containing lutein, zeaxanthin, and antioxidants have been proven to be effective in slowing down the progression of advanced AMD, as evidenced by international studies. Multifocal electroretinogram (mFERG) is of interest as a method of objective assessment of retinal function and is one of the sensitive biomarkers of severity and progression of the disease. The article presents clinical examples of the use of the objective mFERG technique in assessing the effect of VMC on retinal cells.

About the Author

A. I. Malakhova
Care Smolensk Regional Clinical Hospital
Russian Federation

Malakhova Anna I. - PhD, ophthalmologist, chief ophthalmologist of the Ministry of Health of the Smolensk Region.

Gagarina ave., 27, Smolensk, 214018



References

1. Nutrition and clinical dietetics. National guidelines. Tutelyan V.A., Nikityuk D.B., eds. Moscow: GEOTAR-Media; 2020:656 (In Russ.).

2. Kodentsova VM, Vrzhesinskaya OA, Risnik DV. Provision of the Russian population with micronutrients and possibilities of its correction. State of the problem. Problems of Nutrition. 2017;86(4):113–124 (In Russ.). doi: 10.24411/0042-88332017-00067.

3. Skoblina N. Eye health risks associated with the use of electronic devices and awareness of youth. Klinika Oczna. Acta Ophthalmologica Polonica. 2020;2:60–65.

4. Ushakov IB, Popov VI, Skoblina NA, Markelova SV. Duration of use of mobile electronic devices as a modern risk factor for the health of children, adolescents and young people. Human ecology. 2021;7:43–50 (In Russ.).

5. Studenikin VM, Spirichev VB, Samsonova TV. Influence of supplementary vitamins donation on morbidity and cognitive functions in children. Problems of pediatric nutritiology. 2009;7(3):32–37 (In Russ.).

6. NIH study confirms benefit of supplements for slowing age-related macular degeneration https://www.nih.gov/news-events/news-releases/nih-study-confirmsbenefit-supplements-slowing-age-related-macular-degeneration (дата обращения: 10.09.2024).

7. Kirpichenkova EV. Study of the content of lutein and zeaxanthin in the diet with an assessment of the relationship between the level of alimentary intake of nonvitamin carotenoids and the density of the macular region of the retina at a young age. Рroblems of nutrition. 2018;87(5): 20–26 (In Russ.).

8. Colijn JM, Buitendijk GHS, Prokofyeva E, Alves D, Cachulo ML, Khawaja AP, Cougnard-Gregoire A, Merle BMJ, Korb C, Erke MG, Bron A, Anastesopoulos E, Meester-Smoor MA, Segato T, Piermacocchi S, de Jong PTVM, Vingerling JR, Topouzis F, Creuzot-Garcher C, Bettelsen G, Preiffer N, Fletcher AE, Foster PJ, Silva R, Korobelnik J-F, Delcourt C, Klever CCW. Prevalence of age-related macular degeneration in Europe. The past and the future. Ophthalmology. 2017;124(12):1753–1763. doi: 10.1016/j.ophtha.2017.05.035.

9. Smirnova TV, Budzinskaya MV, Sheludchenko VM. Multifocal electroretinography in the diagnosis and monitoring of early and intermediate stages of age-related macular degeneration. Russian Annals of Ophthalmology. 2024;140(2.2):172–179 (In Russ.). doi: 10.17116/oftalma2024140022172.

10. Delcourt C, Carrière I, Delage M, Barberger-Gateau P, Schalch W; POLA Study Group. Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: the POLA Study. Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2329–2335. doi: 10.1167/iovs.05-1235.

11. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001 Oct;119(10):1439–1452. doi: 10.1001/archopht.119.10.1439.

12. Parmar UPS. Antioxidants in Age-Related Macular Degeneration: Lights and Shadows. Antioxidants. 2025;14:152. doi: 10.3390/antiox14020152.

13. Clinical guidelines “Age-related macular degeneration”, 2024.

14. Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR. Beckman Initiative for Macular Research Classification Committee. Clinical classification of age-related macular degeneration. 2013 Apr;120(4):844–851. doi: 10.1016/j.ophtha.2012.10.036.

15. Yu JJ, Agrón E, Clemons TE, Domalpally A, van Asten F, Keenan TD, Cukras C, Chew EY. Age-Related Eye Disease Study 2 Research Group. Natural History of Drusenoid Pigment Epithelial Detachment Associated with Age-Related Macular Degeneration: Age-Related Eye Disease Study 2 Report No. 17. Ophthalmology 2019 Feb;126(2):261–273. doi: 10.1016/j.ophtha.2018.08.017.

16. Curcio CA. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci. 2018 Mar 20;59(4):AMD160–AMD181. doi: 10.1167/iovs.18-24882.

17. Hayashi R, Hayashi S, Machida S. Changes in Macular Pigment Optical Density among Pseudophakic Patients following Intake of a Lutein-Containing Supplement. Ophthalmic Res. 2021;64(5):828–836. doi: 10.1159/000517573.

18. Rosenthal JM, Kim J, de Monasterio F, Thompson DJ, Bone RA, Landrum JT, de Moura FF, Khachik F, Chen H, Schleicher RL, Ferris FL 3rd, Chew EY. Dose-ranging study of lutein supplementation in persons aged 60 years or older. Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5227–5233. doi: 10.1167/iovs.05-1513.

19. Pedanova EK. Nutraceuticals for Age-Related Macular Degeneration: Formulation Optimization Focused on Safety. Ophthalmology in Russia. 2022;19(1):179–187 (In Russ.). doi: 10.18008/1816-5095-2022-1-179-187.

20. Landrum JT, Bone RA, Lutein, zeaxanthin, and the macular pigment, Arch. Biochem. Biophys. 2001;385:28–40. doi: 10.1006/abbi.2000.2171.

21. Arunkumar R, Gorusupudi A, Bernstein PS. The macular carotenoids: A biochemical overview. Biochimica et Biophysica Acta (BBA) — Molecular and Cell Biology of Lipids. 2020;1865(11):158617. doi: 10.1016/j.bbalip.2020.158617.

22. AREDS2 Research Group; Chew EY, Clemons T, SanGiovanni JP, Danis R, Domalpally A, McBee W, Sperduto R, Ferris FL. The Age-Related Eye Disease Study 2 (AREDS2): study design and baseline characteristics (AREDS2 report number 1). Ophthalmology. 2012 Nov;119(11):2282–2289. doi: 10.1016/j.ophtha.2012.05.027.

23. Shyam R, Gorusupudi A, Nelson K. Horvath MP. Bernstein PS. RPE65 has an additional function as the lutein to meso-zeaxanthin isomerase in the vertebrate eye. Proc. Natl. Acad. Sci. USA. 2017;114:10882–10887.

24. Bone RA, Landrum JT, Fernandez L, Tarsis SL. Analysis of the macular pigment by HPLC: Retinal distribution and age study. Investig. Ophthalmol. Vis. Sci. 1988;29:843–849.

25. Bernstein PS, Arunkumar R. The emerging roles of the macular pigment carotenoids throughout the lifespan and in prenatal supplementation. J. Lipid Res. 2021;62:100038.

26. Malakhova AI, Ershov AV, Bystrevskaya AA. Dietary intake of substances necessary for the functioning of the retina by children and adolescents and modern possibilities of nutraceutical support of the visual organ in children. Clinical ophthalmology. 2025;25(1):71–77. doi: 10.32364/2311-7729-2025-25-1-11.

27. Jia YP, Sun L, Yu HS, Liang LP, Li W, Ding H, Song XB, Zhang LJ. The Pharmacological Effects of Lutein and Zeaxanthin on Visual Disorders and Cognition Diseases. Molecules. 2017 Apr 20;22(4):610. doi: 10.3390/molecules22040610.

28. Widomska J, Subczynski WK, Welc-Stanowska R, Luchowski R. An Overview of Lutein in the Lipid Membrane. Int. J. Mol. Sci. 2023;24:12948. doi: 10.3390/ijms241612948.

29. Lin CW, Yang CM, Yang CH. Effects of the Emitted Light Spectrum of Liquid Crystal Displays on Light-Induced Retinal Photoreceptor Cell Damage. Int J Mol Sci. 2019 May 10;20(9):2318.

30. Gndoyan IA. Issues of trophic support in pediatric ophthalmology. Ophthalmology. 2020;17(3):309–320 (In Russ.).

31. Roberts JE, Dennison J. The Photobiology of Lutein and Zeaxanthin in the Eye. J Ophthalmol 2015;2015:687173.

32. Truscott TG. Synergistic effects of antioxidant vitamins. Bibliotheca Nutritio et Dieta. 2001;55:68–79.

33. Roberts JE, Dennison J. The photobiology of lutein and zeaxantin in the eye. Review article. J Ophthalmol. 2015:2015:687173.

34. Scripsema NK, Hu DN, Rosen RB. Lutein, Zeaxanthin, and meso-Zeaxanthin in the Clinical Management of Eye Disease. J Ophthalmol. 2015;2015:865179. doi: 10.1155/2015/865179.

35. Neelam K, Hogg RE, Stevenson MR, Johnston E, Anderson R, Beatty S, Chakravarthy U. Carotenoids and co-antioxidants in age-related maculopathy: design and methods. Ophthalmic Epidemiology. 2008;15:389–401.

36. Jaggi D. Fluorescence lifetime imaging ophthalmoscopy and the influence of oral lutein/zeaxanthin supplementation on macular pigment (FLOS) — A pilot study. Clinical Nutrition ESPEN. 2023;56:127–134.

37. Jia YP, Sun L, Yu HS, Liang LP, Li W, Ding H, Song XB, Zhang LJ. The Pharmacological Effects of Lutein and Zeaxanthin on Visual Disorders and Cognition Diseases. Molecules. 2017 Apr 20;22(4):610. doi: 10.3390/molecules22040610.

38. Berrow EJ, Bartlett HE, Eperiesi F, Gibson JM. The electroretinogram: a useful tool for evaluating age-related macular disease? Doc Ophthalmol. 2010;121(1):51–62. doi: 10.1007/s10633-010-9226-1.

39. Klein R, Wang Q, Klein BE, Moss SE, Meuer SM. The relationship of age-related maculopathy, cataract, and glaucoma to visual acuity. Invest Ophthalmol Vis Sci. 1995 Jan;36(1):182–191.

40. Cheng AS, Vingrys AJ. Visual losses in early age-related maculopathy. Optom Vis Sci. 1993 Feb;70(2):89–96. doi: 10.1097/00006324-199302000-00001.

41. Hood DC. Assessing retinal function with the multifocal technique. Prog Retin Eye Res. 2000 Sep;19(5):607–646. doi: 10.1016/s1350-9462(00)00013-6.

42. Hood DC, Odel JG, Chen CS, Winn BJ. The multifocal electroretinogram. J Neuroophthalmol. 2003;23(3):225–235. doi: 10.1097/00041327-200309000-00008.

43. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol. 2012;124(1):1–13. doi: 10.1007/s10633-011-9296-8.

44. Moschos MM, Nitoda E. The Role of mf-ERG in the Diagnosis and Treatment of Age-Related Macular Degeneration: Electrophysiological Features of AMD. Semin Ophthalmol. 2018;33(4):461–469. doi: 10.1080/08820538.2017.1301496.

45. Wu Z, Ayton LN, Guymer RH, Luu CD. Comparison between multifocal electroretinography and microperimetry in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014 Aug 26;55(10):6431–6439. doi: 10.1167/iovs.14-14407.

46. Borrelli E, Mastropasqua R, Senatore A, Palmieri M, Toto L, Sadda SR, Mastropasqua L. Impact of choriocapillaris flow on multifocal electroretinography in intermediate age-related macular degeneration eyes. Invest Ophthalmol Vis Sci. 2018;59(4):AMD25–AMD30. doi: 10.1167/iovs.18-23943.

47. Shamshinova AM, Seidova S-FG. Optimization of the method of registration of multifocal electroretinogram. Annales of ophthalmology. 2009;125(1):13–17 (In Russ.).

48. Gerth C, Hauser D, Delahunt PB, Morse LS, Werner JS. Assessment of multifocal electroretinogram abnormalities and their relation to morphologic characteristics in patients with large drusen. Arch Ophthalmol. 2003;121(10):1404–1414. doi: 10.1001/archopht.121.10.1404.

49. Gerth C, Delahunt PB, Alam S, Morse LS, Werner JS. Conemediated multifocal electroretinogram in age-related macular degeneration: progression over a long-term followup. Arch Ophthalmol. 2006;124(3):345–352. doi: 10.1001/archopht.124.3.345.

50. Li J, Tso MO, Lam TT. Reduced amplitude and delayed latency in foveal response of multifocal electroretinogram in early age related macular degeneration. Br J Ophthalmol. 2001;85(3):287–290. doi: 10.1136/bjo.85.3.287.

51. Parisi V, Ziccardi L, Costanzo E, Tedeschi M, Barbano L, Manca D, Di Renzo A, Giorno P, Varano M, Parravano M. Macular functional and morphological changes in intermediate age-related maculopathy. Invest Ophthalmol Vis Sci.2020;61(5):11. doi: 10.1167/iovs.61.5.11.

52. Zolnikova IV, Karlova IZ, Ponomareva EN, Viadro EV, Shamshinova AM. Macular and multifocal electroretinography in assessing the functional state of the macular region of the retina in age-related macular degeneration. Annales of Ophthalmology. 2009;125(1):27–32 (In Russ.).

53. Gonzalez-Garcıa E, Vilela C, Navea A, Arnal E, Muriach M, Romero FJ. Electrophysiological and clinical tests in dry age-related macular degeneration follow-up: differences between mfERG and OCT. Doc Ophthalmol. 2016;133:31–39. doi: 10.1007/s10633-016-9545-y.

54. Ambrosio L, Ambrosio G, Nicoletti G, de Crecchio G, Falsini B. The value of multifocal electroretinography to predict progressive visual acuity loss in early AMD. Doc Ophthalmol. 2015 Oct;131(2):125–135. doi: 10.1007/s10633-015-9507-9.

55. Parisi V, Tedeschi M, Gallinaro G, Varano M, Saviano S, Piermarocchi S, CARMIS Study Group. Carotenoids and antioxidants in age-related maculopathy Italian study: multifocal electroretinogram modifications after 1 year. Ophthalmol. 2008;115(2):324–333. doi: 10.1016/j.ophtha.2007.05.029.

56. Drakon AK, Sheludchenko VM, Yusef YuN, Kurguzova AG, Smirnova TV, Korchazhkina NB. Possibilities of using physiotherapeutic technologies in ophthalmic rehabilitation of patients with non-exudative form of age-related macular degeneration (drusen). Bulletin of ophthalmology. 2022;138(5):74–79 (In Russ.). doi: 10.187116/oftalma202213805174.

57. Moulard M, Cosker E, Angioi-Duprez K, Laprévote V, Schwan R, Schwitzer T. Retinal markers of therapeutic responses in major depressive disorder: Effects of antidepressants on retinal function. J Psychiatr Res. 2022 Oct;154:71–79. doi: 10.1016/j.jpsychires.2022.07.022.

58. Age-Related Eye Disease Study Research Group A randomized, placebo-controlled, clinical trialof high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-relatedmacular degeneration and vision loss: AREDS report no. 8. Archives of ophthalmology. 2001;119(10):1417.

59. Parisi V, Tedeschi M, Gallinaro G, Varano M, Saviano S, Piermarocchi S; CARMIS Study Group. Carotenoids and Antioxidants in Age-Related Maculopathy Italian Study Ophthalmology. 2008 Feb;115(2):324–333.e2. doi: 10.1016/j.ophtha.2007.05.029.

60. Gomon YuM, Kolbin AS, Lavrova VA, Neznanov N.G. Pharmacoepidemiology of antidepressants in the Russian Federation. MyRWD. 2025;1. URL: https://cyberleninka.ru/article/n/farmakoepidemiologiya-antidepressantov-v-rossiyskoy-federatsii (date of access: 06.23.2025).


Review

For citations:


Malakhova A.I. The Importance of Nutraceutical Support According to the AREDS2 Protocol in Age-related Macular Degeneration. Clinical observation. Ophthalmology in Russia. 2025;22(4):919-929. (In Russ.) https://doi.org/10.18008/1816-50952025-4-919-929

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)