Monitoring of Separate Pathogenetically Significant Biochemical Markers in Lacrimal Fluid, Ophthalmological Parameters with Combined Pathology of Diabetic Retinopathy and Age-Related Macular Degeneration on the Background Angioprotective and Antioxidant Therapy
https://doi.org/10.18008/1816-5095-2018-2-189-199
Abstract
Object: Optimization of treatment in early stages of combined fundus pathology diabetic retinopathy (DR without DME) and dry type of age-related macular degeneration (AMD AREDS I, II, III).
Patients and methods: 120 people (150 eyes). Study group 1 (SG1) — control 60 people. (60 eyes); study group 2 (SG2) — 30 people. (30 eyes) — DRI without DME and AMD AREDS I, II, III) treatment: 1 year with angioprotective calcium dobezilate (Doxi- Hem®) dose of 500 mg 3 after 6 months, 500 mg once a day for 6 months and at the same time 1 year antioxidant agent (Retinorm) 1 capsule 3 times a day; study group 3 group (SG3) 30 people. (30 eyes) — with DRO and dry type of AMD (AREDS I, II, III) 1 year Retinorm 1 capsule 3 times a day; study group 4 (SG4) with DRI without DME — 30 people. (30 eyes) 1 year Doxi-Hem®. Monitoring: monthly standard ophthalmologic examination, control of diabetes mellitus (HbA1C) compensation, VEGF-A vascular endothelial growth factor in tear.
Results. Visual acuity increased on the background of treatment in all three groups (IG2,3,4): in SG2 from 0.72 ± 0.02 to 0.87 ± 0.02, p < 0.05; the thickness of the retina decreased from 290.2 ± 2.1 to 268.85 ± 2.2 μm, p < 0.05, the photosensitivity increased from 21.0 ± 0.2 to 25.1 ± 0.2 dB p < 0.05; in the tear VEGF-A to 415.4 ± 4.6 pg/ml, p < 0.05. In SG3, visual acuity increased from 0.74 ± 0.02 to 0.88 ± 0.02, p < 0.05; the thickness of the retina decreased from 287.7 ± 2.0 to 272.8 ± 2.2 μm (р < 0.05); increased photosensitivity from 21.3 ± 0.2 to 24.5 ± 0.2 dB, p < 0.05; in the VEGF-A slip to 416.6 ± 5.0 pg/ml, p > 0.05. In IG4 visual acuity increased from 0.70 ± 0.02 to 0.78 ± 0.02, p < 0.05; the thickness of the retina decreased from 288.1 ± 4.4 to 280.1 ± 2.4 μm, р < 0.05; the photosensitivity increased from 21.2 ± 0.2 to 23.2 ± 0.2 dB; VEGF-A up to 415.9 ± 3.8 pg/ml, p > 0.05.
Conclusion. Combined therapy of angioprotective (Doxi-Hem®) and antioxidant therapy (Retinorm) with timely appointment at early dry stages of combined pathology (DR and AMD) will allow to stabilize, delay the development of severe forms of the disease.
About the Author
I. V. VorobyevaRussian Federation
Barrikadnaya str., 2/1, Moscow, 125993, Russia
Mamonovsky per., 7, Moscow, 123001, Russian Federation
MD, docent of the Department of Ophthalmology
References
1. Assel M.J., Li F., Wang Y., Allen A.S., Baggerly K.A., Vickers A.J Genetic Polymorphisms of CFH and ARMS2 Do Not Predict Response to Antioxidants and Zinc in Patients with Age- Related Macular Degeneration Independent Statistical Evaluations of Data from the Age- Related Eye Disease Study. Оphthalmology. 2018;125(3):391–7. DOI: 10.1016/j.ophtha.2017.09.008
2. Rinsky B., Hagbi-Levi S., Grunin M., Chowers I. Characterizing the effect of supplements on the phenotype of cultured macrophages from patients with agerelated maculardegeneration. Мolecular vision. 2017;23:889–99.
3. Mervat A. A., Eman M. A., Amal I. E.. Effectiveness of selenium on acrylamide toxicity to retina. Int. J. Ophthalmol. 2014;7(4):614–620. DOI: 10.3980/j.issn.2222-3959.2014.04.05
4. Eckhert C.D., Lockwood M.K., Shen B. Influence of selenium on the microvasculature of the retina. Microvasc Res. 1993;45(1):74–82.
5. Kim E.K., Kim H., Vijayakumar A., Kwon O., Chang N.Associations between fruit and vegetable, and antioxidant nutrient intake and age-related macular degeneration by smoking status in elderly Korean men. Nutrition journal.2017;16(77):1–9. DOI: 10.1186/s12937-017-0301-2
6. Kim E.K., Kim H., Kwon O., Chang N. Associations between fruits, vegetables, vitamin A, beta-carotene and flavonol dietary intake, and age-related maculardegeneration in elderly women in Korea: the Fifth Korea National Health and Nutrition Examination Survey. Еuropean journal of clinical nutrition. 2018;72(1):161–7. DOI: 10.1038/ejcn.2017.152
7. Gong X.M., Draper C.S., Allison G.S., Marisiddaiah R., Rubin L.P. Effects of the Macular Carotenoid Lutein in Human Retinal Pigment Epithelial Cells. Аntioxidant. 2017;6(4):100. DOI: 10.3390/antiox6040100
8. Power R., Coen R.F., Beatty S., Mulcahy R., Moran R., Stack J., Howard A.N., Nolan J.M. Supplemental Retinal Carotenoids Enhance Memory in Healthy Individuals with Low Levels of Macular Pigment in A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Journal of alzheimers disease. 2018;61(3):947–61. DOI: 10.3233/JAD-170713
9. Sarialtin S.Y., Coban T. An Overview on the Role of Macular Xanthophylls in Ocular Diseases. Records of natural products. 2018;12(2):107–20. DOI: 10.25135/rnp.14.17.04.067
10. Zeimer M., Hense H. W., Heimes B. The macular pigment: short- and intermediateterm changes of macular pigment optical density following supplementation with lutein and zeaxanthin and co -antioxidants. The LUNA Study. Ophthalmologe. 2009;106:29–36. DOI: 10.1007/s00347-008-1773-4.
11. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta-carotene, and zinc for age-related macular degeneration and vision loss: AREDS Report no. 8. Arch. Ophthalmol. 2001;119(10):1417–36.
12. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309(19):2005–15.
13. Tsang N.C.K., Penfold P.L., Snitch P.J., Billson F. Serum levels of antioxidants and age-related macular degeneration. Documenta Ophthalmologica. 1992;81(4):387–400.
14. Ribeiro M.L., Seres A.I., Carneiro A.M., Stur M., Zourdani A., Caillon P., José G. Cunha- Vaz. Effect of calcium dobesilate on progression of early diabetic retinopathy: a randomised double-blind study. Graefe’s Archive for Clinical and Experimental Ophthalmology. Springer Science + Business Media. 2006;244(12):1591–600. DOI: 10.1007 / s00417-006-0318-2
15. Demirtas S., Caliskan А., Guclu О., Yazici S., Karahan O., Yavuz C., Mavitas B. Can calcium dobesilate be used safely for peripheral microvasculopathies that require neoangiogenesis? Medical Science Monitor Basic Research. International Scientific Literature. 2013;19:253–7. DOI: 10.12659/MSMBR.889427
16. Vadlapatla R.K. Vadlapudi A.D., Mitra A.K. Hypoxia-inducible factor-1 (HIF-1): a potential target for intervention in ocular neovascular diseases. Curr. Drug Targets. 2013;14:919–35.
17. Wong E.N., Mackey D.A., Morgan W.H., Chen F.K. Inter-device comparison of retinal sensitivity measurements: the CenterVue MAIA and the Nidek MP-1. Clinical & Experimental Ophthalmology Wiley-Blackwell. 2016;44(1):15–23. DOI: 10.1111/ceo.12629
18. Midena E., Vujosevic S. Microperimetry in diabetic retinopathy. Saudi Journal of Ophthalmology 2011;25(2):131–5. DOI: 10.1016/j.sjopt.2011.01.010
19. Raman R., Nittala M., Gella L., Pal S., Sharma T. Retinal sensitivity over hard exudates in diabetic retinopathy. Journal of Ophthalmic and Vision Research 2015;10(2):160. DOI: 10.4103/2008-322x.163771
20. Wong E.N., Mackey D.A., Morgan W.H. et al. Inter-device comparison of retinal sensitivity measurements: the CenterVue MAIA and the Nidek MP-1. Clin Experiment Ophthalmol. 2016;44(1):15–23. DOI: 10.1111/ceo.12629
21. Cennamo G., Vecchio E.C., Finelli M., Velotti N., de Crecchio G. Evaluation of ischemic diabetic maculopathy with Fourier-domain optical coherence tomography and microperimetry. Canadian Journal of Ophthalmology / Journal Canadien d’Ophtalmologie Elsevier BV. 2015 Feb;50(1):44–88. DOI: 10.1016/j.jcjo.2014.08.005
22. Kim D.Y., Yang H.S,. Kook Y.J., Lee J.Y. Association between Microperimetric Parameters and Optical Coherent Tomographic Findings in Various Macular Diseases. Korean J Ophthalmol. 2015;29(2):92. DOI: 10.3341/kjo.2015.29.2.92
23. Takamura Y., Tomomatsu T., Matsumura T. The effect of photocoagulation in ischemic areas to prevent recurrence of diabetic macular edema after intravitreal bevacizumab injection. Invest. Ophthalmol. Vis. Sci. 2014;55(8):4741–6. DOI: 10.1167/iovs.14-14682
24. Praidou A., Androudi S., Brazitikos P. Diabetic retinopathy treated with laser photocoagulation and the indirect effect on glycaemic control. Retina. 2015;35(2):280– 7. DOI: 10.1155/2014/158251
25. Sin H.P., Liu D.T., Lam D.S. Lifestyle modification, nutritional and vitamins supplements for age-related macular degeneration. Acta Ophthalmol. 2013;91(1):6–11. DOI: 10.1111/j.1755-3768.2011.02357.x
26. Safi S.Z., Qvist R., Kumar S., Batumalaie K., Ismail I.S. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. BioMed Res. Int. 2014;2014:801269. DOI: 10.1155/2014/801269
27. Querques G., Rosenfeld P.J., Cavallero E. Treatment of Dry Age-Related Macular Degeneration. Ophthalmic. Res. 2014;52(3):107–15.
28. Zeimer M., Hense H. W., Heimes B. The macular pigment: short— and intermediate — term changes of macular pigment optical density following supplementation with lutein and zeaxanthin and co — antioxidants. The LUNA Study. Ophthalmologe. 2009;106:29–36. DOI: 10.1007/s00347-008-1773-4
29. Dawczynski J., Jentsch S., Schweitzer D., Hammer M., Lang G.E., Strobel J. Long term effects of lutein, zeaxanthin and omega-3-LCPUFAs supplementation on optical density of macular pigment in AMD patients: the LUTEGA study. Graefes Arch Clin Exp Ophthalmol. 2013;251(12):2711–23.
30. Воробьева И.В. Современные подходы к ранней диагностике, патогенетическому лечению диабетической ретинопатии. Вестник офтальмологии. 2016;132(5):60–67. [Vorob’eva I.V. Modern approach to early diagnosis and pathogenetic treatment of diabetic retinopathy. Vestnik Oftalmolology. 2016;132(5):60– 67. (In Russ.)] DOI: 10.17116/oftalma2016132560-67
Review
For citations:
Vorobyeva I.V. Monitoring of Separate Pathogenetically Significant Biochemical Markers in Lacrimal Fluid, Ophthalmological Parameters with Combined Pathology of Diabetic Retinopathy and Age-Related Macular Degeneration on the Background Angioprotective and Antioxidant Therapy. Ophthalmology in Russia. 2018;15(2):189-199. (In Russ.) https://doi.org/10.18008/1816-5095-2018-2-189-199