Pharmacological Analysis of Resistance to Anti-VEGF Therapy
https://doi.org/10.18008/1816-5095-2018-4-382-387
Abstract
Age-related macular degeneration (AMD) is a disease that occurs in adults over 50 years old and the leading cause of irreversible blindness in developed countries. AMD is characterized with a lesion of retina macular area and leads to a deterioration in central vision. Therapy aimed at combating the vascular endothelial growth factor (VEGF) resulted in an increase of corrected visual acuity in patients with neovascular age-related macular degeneration. Possible significant differences in the response to anti-VEGF therapy are due to the existence of several anti-VEGF agents with different molecular configurations. Currently, there is no consensus on classification of the optimal response or its absence with this method of treatment. In particular, there is confusion about such terms as “defendant status” after treatment with n-AMD, “tachyphylaxis” and “resistant” n-AMD. Drug tolerance is a pharmacological concept applicable to a patient’s response to a particular drug, with the physiological drug concentration is reducing in case of re-introduced. It requires the increasement the dose or frequency of drug administration to achieve the desired therapeutic effect. Tachyphylaxis is a term indicating a sudden decrease in response to a drug after its administration. This process can develop both after the initial or several administration in small doses. Tachyphylaxis develops in the background or after treatment with ranibizumab with at least two injections of the drug.Switching the treatment regimen to aflibercept or conbercept can be effective in patients resistant to bevascizumab or ranibizumab.The involvement of other pathological processes in the development mechanism of the neovascular form of AMD in addition to increased expression of VEGF dictates the need for combined therapy for this group of patients.
About the Authors
M. V. BudzinskayaRussian Federation
MD, Head of the Department of Clinical Trials in Ophthalmology, Deputy Director
Rossolimo str., 11A, B, Moscow, 119021, Russia
A. A. Plyukhova
Russian Federation
PhD, Research Officer
Rossolimo str., 11A, B, Moscow, 119021, Russia
I. V. Andreeva
Russian Federation
PhD, Research Officer
Rossolimo str., 11A, B, Moscow, 119021, Russia
A. V. Kuznetsov
Russian Federation
PhD, Research Officer
Rossolimo str., 11A, B, Moscow, 119021, Russia
A. V. Shelankova
Russian Federation
Junior Researcher
Rossolimo str., 11A, B, Moscow, 119021, Russia
P. A. Sorokin
Russian Federation
Assistant Researcher
Rossolimo str., 11A, B, Moscow, 119021, Russia
References
1. Lim L.S., Mitchell P., Seddon J.M., Holz F.G., Wong T.Y. Age-related macular degeneration. Lancet. 2012;379(9827):1728–1738. DOI: 10.1016/S0140-6736(12)60282-7
2. Binder S. Loss of reactivity in intravitreal anti-VEGF therapy: tachyphylaxis or tolerance?.Br J Ophthalmol. 2012;96(1):1–2. DOI: 10.1136/bjophthalmol-2011-301236 3. Arjamaa O., Minn H. Resistance, not tachyphylaxis or tolerance. Br J Ophthalmol. 2012;96(8):1153–1154. DOI: 10.2147/DDDT.S97653
3. Rogers F.B. Medical subject headings. Bull Med Libr Assoc. 1963;51:114–116.
4. Westfall T.C., Westfall D.P. Goodman and Gilman’s. The Pharmacological Basis of Therapeutics. 12th ed. New York, NY: McGraw-Hill, 2011.
5. Forooghian F., Cukras C., Meyerle C.B., Chew E.Y., Wong W.T. Tachyphylaxis after intravitreal bevacizumab for exudative age-related macular degeneration. Retina. 2009;29(6):723–731.
6. Busbee B.G., Ho A.C., Brown D.M. et al. Twelve-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfovealneovascular age-related macular degeneration. Ophthalmology. 2013;120(5):1046–1056. DOI: 10.1016/j.ophtha.2012.10.014
7. Brown D.M., Chen E., Mariani A., Major J.C., Jr. Group S.S. Super-dose anti-VEGF (SAVE) trial: 2.0 mg intravitreal ranibizumab for recalcitrant neovascular macular degeneration-primary end point. Ophthalmology. 2013;120(2):349–354. DOI: 10.1016/j.ophtha.2012.08.008
8. Stewart M.W., Rosenfeld P.J., Penha F.M. et al. Pharmacokinetic rationale for dosing every 2 weeks versus 4 weeks with intravitreal ranibizumab, bevacizumab, and aflibercept (vascular endothelial growth factor Trap-eye). Retina. 2012;32(3):434–457. DOI: 10.1097/IAE.0B013E31822C290F
9. Bunnel C.A. Intensive Review of Internal Medicine. Boston, MA: Harvard Medical School, 2009.
10. Keane P.A., Liakopoulos S., Ongchin S.C. et al. Quantitative subanalysis of optical coherence tomography after treatment with ranibizumab for neovascular agerelated macular degeneration. Invest Ophthalmol Vis Sci. 2008;49(7):3115–3120.
11. Almony A., Mansouri A., Shah G.K., Blinder K.J. Efficacy of intravitreal bevacizumab after unresponsive treatment with intravitreal ranibizumab. Can J Ophthalmol. 2011;46(2):182–185. DOI: 10.3129/i10-095
12. Kent J.S., Iordanous Y., Mao A., Powell A.M., Kent S.S., Sheidow T.G. Comparison of outcomes after switching treatment from intravitreal bevacizumab to ranibizumab in neovascular age-related macular degeneration. Can J Ophthalmol. 2012;47(2):159–164. DOI: 10.1016/j.jcjo.2012.01.003
13. Kaiser R.S., Gupta O.P., Regillo C.D. et al. Ranibizumab for eyes previously treated with pegaptanib or bevacizumab without clinical response. Ophthalmic Surg Lasers Imaging. 2012;43(1):13–19. DOI: 10.3928/15428877-20111006-01
14. Ehlken C., Jungmann S., Bohringer D., Agostini H.T., Junker B., Pielen A. Switch of anti-VEGF agents is an option for nonresponders in the treatment of AMD. Eye (Lond). 2014;28(5):538–545. DOI: 10.1038/eye.2014.64
15. Aslankurt M., Aslan L., Aksoy A., Erden B., Cekic O. The results of switching between 2 anti-VEGF drugs, bevacizumab and ranibizumab, in the treatment of neovascular age-related macular degeneration. Eur J Ophthalmol. 2013;23(4):553–557. DOI: 10.5301/ejo.5000268
16. Pinheiro-Costa J., Freitas-da-Costa P., Falcao M.S., Brandao E.M., Falcao-Reis F., Carneiro A.M. Switch from intravitreal ranibizumab to bevacizumab for the treatment of neovascular age-related macular degeneration: clinical comparison. Ophthalmologica. 2014;232(3):149–155. DOI: 10.1159/000381221
17. Yonekawa Y., Andreoli C., Miller J.B. et al. Conversion to aflibercept for chronic refractory or recurrent neovascular age-related macular degeneration. Am J Ophthalmol. 2013;156(1):29–35.e22. DOI: 10.1016/j.ajo.2013.03.030
18. Kumar N., Marsiglia M., Mrejen S. et al. Visual and anatomical outcomes of intravitreal aflibercept in eyes with persistent subfoveal fluid despite previous treatments with ranibizumab in patients with neovascular age-related macular degeneration. Retina. 2013;33(8):1605–1612. DOI: 10.1097/IAE.0b013e31828e8551
19. Fassnacht-Riederle H., Becker M., Graf N., Michels S. Effect of aflibercept in insufficient responders to prior anti-VEGF therapy in neovascular AMD. Graefes Arch Clin Exp Ophthalmol. 2014;252(11):1705–1709. DOI: 10.1007/s00417-014-2589-3
20. Singh R.P., Srivastava S., Ehlers J.P., Bedi R., Schachat A.P., Kaiser P.K. A singlearm, investigator-initiated study of the efficacy, safety and tolerability of intravitreal aflibercept injection in subjects with exudative age-related macular degeneration, previously treated with ranibizumab or bevacizumab: 6-month interim analysis. Br J Ophthalmol. 2014;98(Suppl. 1):i22–i27. DOI: 10.1136/bjophthalmol-2013-304798
21. Ferrone P.J., Anwar F., Naysan J. et al. Early initial clinical experience with intravitreal aflibercept for wet age-related macular degeneration. Br J Ophthalmol. 2014;98(Suppl. 1):i17–i21. DOI: 10.1136/bjophthalmol-2013-304474
22. Hall L.B., Zebardast N., Huang J.J., Adelman R.A. Aflibercept in the treatment of neovascular age-related macular degeneration in previously treated patients. J Ocul Pharmacol Ther. 2014;30(4):346–352. DOI: 10.1089/jop.2013.0188
23. Messenger W.B., Campbell J.P., Faridi A. et al. Injection frequency and anatomic outcomes 1 year following conversion to aflibercept in patients with neovascular age-related macular degeneration. Br J Ophthalmol. 2014;98(9):1205–1207. DOI: 10.1038/eye.2015.87
24. Ho V.Y., Yeh S., Olsen T.W. et al. Short-term outcomes of aflibercept for neovascular age-related macular degeneration in eyes previously treated with other vascular endothelial growth factor inhibitors. Am J Ophthalmol. 2013;156(1):23–28.e22. DOI: 10.1016/j.ajo.2013.02.009
25. Heussen F.M., Shao Q., Ouyang Y., Joussen A.M., Muller B. Clinical outcomes after switching treatment from intravitreal ranibizumab to aflibercept in neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2014;252(6):909–915. DOI: 10.1007/s00417-013-2553-7
26. Cho H., Shah C.P., Weber M., Heier J.S. Aflibercept for exudative AMD with persistent fluid on ranibizumab and/or bevacizumab. Br J Ophthalmol. 2013;97(8):1032–1035. DOI: 10.1136/bjophthalmol-2013-303344
27. Gaudreault J., Fei D., Beyer J.C. et al. Pharmacokinetics and retinal distribution of ranibizumab, a humanized antibody fragment directed against VEGF-A, following intravitreal administration in rabbits. Retina. 2007;27(9):1260–1266.
28. Lu X, Sun X. Profile of conbercept in the treatment of neovascular age-related macular degeneration. Drug Des Devel Ther. 2015;9:2311–2320. DOI: 10.2147/DDDT.S67536
29. Inai T., Mancuso M., Hashizume H. et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004;165(1):35–52.
30. Huang J., Soffer S.Z., Kim E.S. et al. Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res. 2004;2(1):36–42.
31. Wu E., Palmer N., Tian Z. et al. Comprehensive dissection of PDGF-PDGFR signaling pathways in PDGFR genetically defined cells. PLoS One. 2008;3(11):e3794.
32. Abramsson A., Lindblom P., Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest. 2003;112(8):1142–1151.
33. Rusnati M., Presta M. Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Curr Pharm Des. 2007;13(20):2025–2044.
34. Kaiser P.K. Emerging therapies for neovascular age-related macular degeneration: drugs in the pipeline. Ophthalmology. 2013;120(5 Suppl.):S11–S15. DOI: 10.1016/j.ophtha.2013.01.061
35. Schaal S., Kaplan H.J., Tezel T.H. Is there tachyphylaxis to intravitreal anti-vascular endothelial growth factor pharmacotherapy in age-related macular degeneration? Ophthalmology. 2008;115(12):2199–2205.
36. Yang S., Zhao J., Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Design, Development and Therapy. 2016;10:1857–1867. DOI: 10.2147/DDDT.S97653
37. Weber B.H., CharbelIssa P., Pauly D., Herrmann P., Grassmann F., Holz F.G. The role of the complement system in age-related macular degeneration. Dtsch Arztebl Int. 2014;111(8):133–138. DOI: 10.3238/arztebl.2014.0133
38. Rofagha S., Bhisitkul R.B., Boyer D.S., Sadda S.R., Zhang K. SEVEN-UP Study Group Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013;120(11):2292–2299. DOI: 10.18240/ijo.2017.01.14
Review
For citations:
Budzinskaya M.V., Plyukhova A.A., Andreeva I.V., Kuznetsov A.V., Shelankova A.V., Sorokin P.A. Pharmacological Analysis of Resistance to Anti-VEGF Therapy. Ophthalmology in Russia. 2018;15(4):382-387. (In Russ.) https://doi.org/10.18008/1816-5095-2018-4-382-387