Митохондриальная ДНК как фактор развития глаукомной оптической нейропатии
https://doi.org/10.18008/1816-5095-2019-4-479-486
Аннотация
Об авторах
И. Р. ГазизоваРоссия
доктор медицинских наук, врач‑офтальмолог
ул. Академика Павлова, 12, Санкт‑Петербург, 197376, Российская Федерация
И. О. Мазунин
Россия
кандидат медицинских наук, заведующий лабораторией молекулярно‑генетических технологий
ул. А. Невского, 14, Калининград, 236016, Российская Федерация
Т. Н. Малишевская
Россия
доктор медицинских наук, руководитель отделения аналитической работы
ул. Садовая‑Черногрязская, 14/19, Москва, 105062, Российская Федерация
О. А. Киселева
Россия
доктор медицинских наук, начальник отдела глаукомы
ул. Садовая‑Черногрязская, 14/19, Москва, 105062, Российская Федерация
А. М. Гаджиев
Россия
врач‑офтальмолог
Колтушское шоссе, 20, Всеволожск, 188640, Российская Федерация
Ал.-М. Ринджибал
Россия
аспирант
ул. Академика Павлова, 12, Санкт‑Петербург, 197376, Российская Федерация
Список литературы
1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. DOI: 10.1136/bjo.2005.081224
2. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta‑analysis. Ophthalmol. 2014;121:2081–2090. DOI: 10.1016/j.ophtha.2014.05.013
3. Sharif N.A. Glaucomatous optic neuropathy treatment options: the promise of novel therapeutics, techniques and tools to help preserve vision. Neural Regen Res. 2018;13(7):1145–1150. DOI: 10.4103/1673‑5374.235017
4. Inman D.M., Harun‑Or‑Rashid M. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma. Front Neurosci. 2017;11:146. Published 2017 Mar 30. DOI: 10.3389/fnins.2017.00146
5. Calkins D.J., Horner P.J. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest Ophthalmol Vis Sci. 2012;53(5):2482–2484. DOI: 10.1167/iovs.12‑9483i
6. Casson R.J., Chidlow G., Wood J.P., Crowston J.G., Goldberg I. Definition of glaucoma: clinical and experimental concepts. Clin Experiment Ophthalmol. 2012;40:341–349. DOI: 10.1111/j.1442‑9071.2012.02773.x
7. Авдеев, Р.В., Александров, А.С., Бакунина, Н.А., Басинский и др. Модель первичной открытоугольной глаукомы: манифестирование и исходы. Клиническая медицина. 2014;12:64–72.
8. Kong Y.X., Coote M.A., O’Neill E.C., Gurria L.U., Vie J., Garway‑Heath D., Medeiros F.A., Crowston J.G. Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination. Clin Experiment Ophthalmol. 2011;39:308–317. DOI: 10.1111/j.1442‑9071.2010.02462.x
9. Osborne N.N., Núñez‑Álvarez C., Joglar B., et al. Glaucoma: Focus on mitochondria in relation to pathogenesis and neuroprotection. Eur J Pharmacol. 2016;Sep:15(787):127–133. DOI: 10.1016/j.ejphar.2016.04.032
10. Yang X.J., Ge J., Zhuo Y.H. Role of mitochondria in the pathogenesis and treatment of glaucoma. Chin Med J (Engl). 2013;126(22):4358‑4365.
11. Kamel K., Farrell M., O’Brien C. Mitochondrial dysfunction in ocular disease: Focus on glaucoma. Mitochondrion. 2017;35:44–53. DOI: 10.1016/j.mito.2017.05.004
12. Munemasa Y., Kitaoka Y., Kuribayashi J., Ueno S. Modulation of mitochondria in the axon and soma of retinal ganglion cells in a rat glaucoma model. J Neurochem. 2010;115:1508–1519. DOI: 10.1111/j.1471‑4159.2010.07057.x
13. Ju W., Liu Q., Kim K., Crowston J.G., Linsey J.D., Agarwal N., Ellisman M.H., Perkins G. A., Weinreb R.N. Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC‑5 cells. Invest Ophthalmol & Visual Science. 2007;48:2145–2151. DOI: 10.1167/iovs.06‑0573
14. Barron M.J., Griffiths P., Turnbull D.M., Bates D., Nichols P. The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br J Ophthalmol. 2004;88(2):286–290. DOI: 10.1136/bjo.2003.027664
15. Izzotti A., Sacca S.C., Longobardi M. Cartiglia C. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Archives of Ophthalmology. 2010;128:724–730. DOI: 10.1001/archophthalmol.2010.87
16. Alekseev V., Gazizova I. Morphological changes in the mitochondria of cells of trabecular zone in patients with primary open‑angle glaucoma. 10th European Glaucoma Society Congress Copenhagen. (Accessed 09.04.2019).
17. Harun‑Or‑Rashid M., Pappenhagen N., Palmer P.G., Smith M.A., Gevorgyan V. Structural and Functional Rescue of Chronic Metabolically Stressed Optic Nerves through Respiration. The Journal of Neuroscience. 2018;38(22):5122–5139. DOI: 10.1523/jneurosci.3652‑17.2018
18. DiMauro S., Schon E., Carelli V., Hirano M. The clinical maze of mitochondrial neurology. Nature Reviews Neurology. 2013;9(8):429–444. DOI: 10.1038/nrneu‑rol.2013.126
19. Joseph J., Denisova N., Bielinski D., Fisher D., Shukitt‑Hale B. Oxidative stress protection and vulnerability in aging: putative nutritional implications for intervention. Mech Ageing Dev. 2000;116(2‑3):141–153. DOI: 10.1016/s0047‑6374(00)00128‑7
20. Olanow C. An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol. 1992;32(S1):S2–S9. DOI: 10.1002/ana.410320703
21. Chrysostomou V., Rezania F., Trounce I., Crowston J. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol. 2013;13(1):12–15. DOI: 10.1016/j.coph.2012.09.008
22. Ito Y., Di Polo A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion. 2017;36:186−192. DOI: 10.1016/j.mito.2017.08.014
23. Cordeiro M.F., Normando E.M., Cardoso M.J., Miodragovic S., Jeylani S., Davis B.M., Guo L., Ourselin S., A’hern R., Bloom P.A. Real‑time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain. 2017;140(6):1757−1767. DOI: 10.1093/brain/awx088
24. Lascaratos G., Garway‑Heath D., Willoughby C., Chau K., Schapira A. Mitochondrial dysfunction in glaucoma: Understanding genetic influences. Mitochondrion. 2012;12(2):202−212. DOI: 10.1016/j.mito.2011.11.004
25. Saccà S., Izzotti A., Rossi P., Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res. 2007;84(3):389−399. DOI: 10.1016/j.exer.2006.10.008
26. Cooper J., Mann V., Schapira A. Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing. J Neurol Sci. 1992;113(1):91−98. DOI: 10.1016/0022‑510X(92)90270‑U
27. Ojaimi J., Masters C., Opeskin K., McKelvie P., Byrne E. Mitochondrial respiratory chain activity in the human brain as a function of age. Mech Ageing Dev. 1999;111(1):39−47. DOI: 10.1016/S0047‑6374(99)00071‑8
28. Boveris A., Navarro A. Brain mitochondrial dysfunction in aging. IUBMB Life. 2008;60(5):308−314. DOI: 10.1002/iub.46
29. Navarro A., Boveris A. The mitochondrial energy transduction system and the aging process. American Journal of Physiology-Cell Physiology. 2007;292(2):C670−C686. DOI: 10.1152/ajpcell.00213.2006
30. Calandrella N., Scarsella G., Pescosolido N., Risuleo G. Degenerative and apoptotic events at retinal and optic nerve level after experimental induction of ocular hypertension. Mol Cell Biochem. 2007;301(1−2):155−163. DOI: 10.1007/s11010‑006‑9407‑0
31. Мазунин И.О., Володько Н.В. Наследственная оптическая нейропатия Лебера. Вестник офтальмологии. 2018;134(2):92. DOI: 10.17116/oftalma2018134292‑96
32. Kasahara A., Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014;24(12):761−770. DOI: 10.1016/j.tcb.2014.08.005
33. Chen M., Liu B., Ma J., Ge J., Wang K. Protective effect of mitochondria‑targeted peptide MTP‑131 against oxidative stress‑induced apoptosis in RGC‑5 cells. Mol Med Rep. 2017;15(4):2179−2185. DOI: 10.3892/mmr.2017.6271
34. Lv B., Chen T., Xu Z., Huo F., Wei Y., Yang X. Crocin protects retinal ganglion cells against H2O2‑induced damage through the mitochondrial pathway and activation of NF‑κB. Int J Mol Med. 2015;37(1):225−232. DOI: 10.3892/ijmm.2015.2418
35. Ju W.K., Kim K.Y., Lindsey J.D., Angert M., Patel A., Scott R.T., Liu Q., Crowston J.G., Ellisman M.H., Perkins G.A., Weinreb R.N. Elevated hydrostatic pressure triggers release of OPA1 and cytochrome C, and induces apoptotic cell death in differentiated RGC‑5 cells. Mol Vis. 2009;15:120–134.
36. Mazunin I., Volodko N., Starikovskaya E., Sukernik R. Mitochondrial genome and human mitochondrial diseases. Mol Biol (NY). 2010;44(5):665−681. DOI: 10.1134/s0026893310050018
37. Patrushev M., Kamenski P., Mazunin I. Mutations in mitochondrial DNA and approaches for their correction. Biochemistry (Moscow). 2014;79(11):1151−1160. DOI: 10.1134/S0006297914110029
38. Torroni A., Achilli A., Macaulay V., Richards M., Bandelt H. Harvesting the fruit of the human mtDNA tree. Trends in Genetics. 2006;22(6):339−345. DOI: 10.1016/j.tig.2006.04.001
39. Wallace D. Mitochondrial genetic medicine. Nat Genet. 2018;50(12):1642−1649. DOI: 10.1038/s41588‑018‑0264‑z
40. Latorre‑Pellicer A., Moreno‑Loshuertos R., Lechuga‑Vieco A.V., Sánchez‑Cabo F., Torroja C., Acín‑Pérez R., Calvo E., Aix E., González‑Guerra A., Logan A., Bernad-Miana M.L., Romanos E., Cruz R., Cogliati S., Sobrino B., Carracedo Á., Pérez‑Martos A., Fernández‑Silva P., Ruíz‑Cabello J., Murphy M.P., Flores I., Vázquez J., Enríquez J.A. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature. 2016;535(7613):561−565. DOI: 10.1038/nature18618
41. Morava E., Kozicz T., Wallace D. The phenotype modifier: is the mitochondrial DNA background responsible for individual differences in disease severity. J Inherit Metab Dis. 2019;42(1):3‑4. DOI: 10.1002/jimd.12050
42. Abu‑Amero K., Morales J., Bosley T. Mitochondrial Abnormalities in Patients with Primary Open‑Angle Glaucoma. Investigative Opthalmology & Visual Science. 2006;47(6):2533. DOI: 10.1167/iovs.05‑1639
43. Banerjee D., Banerjee A., Mookherjee S., Vishal M., Mukhopadhyay A., Sen A., Basu A., Ray K. Mitochondrial Genome Analysis of Primary Open Angle Glaucoma Patients. PLoS ONE. 2013;8(8):e70760. DOI: 10.1371/journal.pone.0070760
44. Collins D.W., Gudiseva H.V., Trachtman B.T., Jerrehian M., Gorry T., Merritt III W.T., Rhodes A.L., Sankar P.S., Regina M., Miller‑Ellis E., O’Brien J.M. Mitochondrial Sequence Variation in African‑American Primary Open‑Angle Glaucoma Patients. PLoS ONE. 2013;8(10):e76627. DOI: 10.1371/journal.pone.0076627
45. Jeoung J., Seong M., Park S., Kim D., Kim S., Park K. Mitochondrial DNA Variant Discovery in Normal‑Tension Glaucoma Patients by Next‑Generation Sequencing. Investigative Opthalmology & Visual Science. 2014;55(2):986. DOI: 10.1167/iovs.13‑12968
46. Sundaresan P., Simpson D., Sambare C., Duffy S., Lechner J., Dastane A., Dervan E.W., Vallabh N., Chelerkar V., Deshpande M., O’Brien C., McKnight A.J., Willoughby C.E. Whole‑mitochondrial genome sequencing in primary open‑angle glaucoma using massively parallel sequencing identifies novel and known pathogenic variants. Genetics in Medicine. 2014;17(4):279−284. DOI: 10.1038/gim.2014.121
47. Yi Q., Deng G., Zhou H., Wu G., Tang L. Mitochondrial transfer RNA variants and primary congenital glaucoma. Mitochondrial DNA. 2015:1−3. DOI: 10.3109/19401736.2015.1028050
48. Inoue‑Yanagimachi M., Himori N., Sato K., Kokubun T., Asano T., Shiga Y., Tsuda S., Kunikata H., Nakazawa T. Association between mitochondrial DNA damage and ocular blood flow in patients with glaucoma. British Journal of Ophthalmology. 2018:bjophthalmol‑2018‑312356. DOI: 10.1136/bjophthalmol‑2018‑312356
49. Singh L.N., Crowston J.G., Lopez Sanchez M.I., Van Bergen N.J., Kearns L.S., Hewitt A.W., Yazar S., Mackey D.A., Wallace D.C., Trounce I.A. Mitochondrial DNA Variation and Disease Susceptibility in Primary Open‑Angle Glaucoma. Investigative Opthalmology & Visual Science. 2018;59(11):4598. DOI: 10.1167/iovs.18‑25085
50. Gudiseva H., Pistilli M., Salowe R., Singh L.N., Collins D.W., Cole B., He J., Merriam S., Khachataryan N., Henderer J., Addis V., Cui Q.N., Sankar P.V., Miller‑Ellis E., Chavali V.R., Ying G.S., Wallace D., O’Brien J.M. The association of mitochondrial DNA haplogroups with POAG in African Americans. Exp Eye Res. 2019;181:85–89. DOI: 10.1016/j.exer.2019.01.015
51. Gorman G., McFarland R., Stewart J., Feeney C., Turnbull D. Mitochondrial donation: from test tube to clinic. The Lancet. 2018;392(10154):1191–1192. DOI: 10.1016/S0140‑6736(18)31868‑3
52. Eyre‑Walker A. Mitochondrial Replacement Therapy: Are Mito‑nuclear Interactions Likely To Be a Problem? Genetics. 2017;205(4):1365–1372. DOI: 10.1534/genetics.116.196436
53. Labarta E., de los Santos M.J., Herraiz S., Escribá M.J., Marzal A., Buigues A., Pellicer A. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization — a randomized pilot study. Fertil Steril. 2019;111(1):86–96. DOI: 10.1016/j.fertnstert.2018.09.023
54. Bacman S., Pereira C., Moraes C. Targeted Mitochondrial Genome Elimination. Mitochondrial Biology and Experimental Therapeutics. 2018:535–563. DOI: 10.1007/978‑3‑319‑73344‑9_24
55. Reddy P., Ocampo A., Suzuki K., Luo J., Bacman S.R., Williams S.L., Sugawara A., Okamura D., Tsunekawa Y., Wu J., Lam D., Xiong X., Montserrat N., Esteban C.R., Liu G.H., Sancho‑Martinez I., Manau D., Civico S., Cardellach F., O’Callaghan M., Campistol J., Zhao H., Campistol J.M., Moraes C.T., Belmonte J. Selective Elimination of Mitochondrial Mutations in the Germline by Genome Editing. Cell. 2015;161(3):459–469. DOI: 10.1016/j.cell.2015.03.051
56. Yang Y., Wu H., Kang X., Liang Y., Lan T., Li T., Tan T., Peng J., Zhang Q., An G., Liu Y., Yu Q., Ma Z., Lian Y., Soh B.S. Targeted elimination of mutant mitochondrial DNA in MELAS‑iPSCs by mitoTALENs. Protein Cell. 2018;9(3):283–297. DOI: 10.1007/s13238‑017‑0499‑y
57. McCann B., Cox A., Gammage P., Stewart J., Zernicka‑Goetz M., Minczuk M. Delivery of mtZFNs into Early Mouse Embryos. Methods in Molecular Biology. 2018:215–228. DOI: 10.1007/978‑1‑4939‑8799‑3_16
58. Bacman S.R., Kauppila J.H., Pereira C.V., Nissanka N., Miranda M., Pinto M., Williams S.L., Larsson N.G., Stewart J.B., Moraes C.T. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med. 2018;24(11):1696–1700. DOI: 10.1038/s41591‑018‑0166‑8
59. Gammage P.A., Viscomi C., Simard M.L., Costa A.S., Gaude E., Powell C.A., Haute L.V., McCann B.J., Rebelo‑Guiomar P., Cerutti R., Zhang L., Rebar E.J., Zeviani M., Frezza C., Stewart J.B., Minczuk M. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med. 2018;24(11):1691–1695. DOI: 10.1038/s41591‑018‑0165‑9
60. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J., Charpentier E. A Programmable Dual‑RNA‑Guided DNA Endonuclease in Adаptive Bacterial Immunity. Science. 2012;337(6096):816–821. DOI: 10.1126/science.1225829
61. Gammage P., Moraes C., Minczuk M. Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR‑Ized. Trends in Genetics. 2018;34(2):101–110. DOI: 10.1016/j.tig.2017.11.001
62. Jo A., Ham S., Lee G., Lee Y., Kim S., Lee Y., Shin J., Le Y. Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed Res Int. 2015;2015:1–10. DOI: 10.1155/2015/305716
63. Loutre R., Heckel A., Smirnova A., Entelis N., Tarassov I. Can Mitochondrial DNA be CRISPRized: Pro and Contra. IUBMB Life. 2018;70(12):1233–1239. DOI: 10.1002/iub.1919
64. Verechshagina N., Nikitchina N., Yamada Y., Harashima H., Tanaka M., Orishchenko K., Mazunin I. Future of human mitochondrial DNA editing technologies. Mitochondrial DNA Part A. 2018;30(2):214–221. DOI: 10.1080/24701394.2018.1472773
65. Bian W., Chen Y., Luo J., Wang C., Xie S., Pei D. A knock‑in strategy for editing human and zebrafish mitochondrial DNA using mito‑CRISPR/Cas9 system. ACS Synth Biol. 2019. DOI: 10.1021/acssynbio.8b00411
66. Clay Montier L., Deng J., Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. Journal of Genetics and Genomics. 2009;36(3):125–131. DOI: 10.1016/s1673‑8527(08)60099‑5
67. Nissanka N., Minczuk M., Moraes C. Mechanisms of Mitochondrial DNA Deletion Formation. Trends in Genetics. 2019;35(3):235–244. DOI: 10.1016/j.tig.2019.01.001
68. Nissanka N., Bacman S., Plastini M., Moraes C. The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat Commun. 2018;9(1). DOI: 10.1038/s41467‑018‑04895‑1
69. Peeva V., Blei D., Trombly G., Corsi S., Szukszto M.J., Rebelo‑Guiomar P., Gammage P.A., Kudin A.P., Becker C., Altmüller J., Minczuk M., Zsurska G., Kunz W.S. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun. 2018;9(1). DOI: 10.1038/s41467‑018‑04131‑w
70. Komor A.C., Zhao K.T., Packer M.S., Gaudelli N.M., Waterbury A.L., Koblan L.W., Kim Y.B., Badran A.H., Liu D.R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G‑to‑T:A base editors with higher efficiency and product purity. Sci Adv. 2017;3(8):eaao4774. DOI: 10.1126/sciadv.aao4774
71. Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–471. DOI: 10.1038/nature24644
72. Rees H., Liu D. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics. 2018;19(12):770–788. DOI: 10.1038/s41576‑018‑0059‑1
73. Komor A., Badran A., Liu D. CRISPR‑Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. 2017;168(1–2):20–36. DOI: 10.1016/j.cell.2016.10.044
74. Kleinstiver B.P., Prew M.S., Tsai S.Q., Topkar V.V., Nguyen N.T., Zheng Z., Gonzales A., Li Z., Peterson R.T., Yeh J.R., Aryee M.J., Joung J.K. Engineered CRISPR‑Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–485. DOI: 10.1038/nature14592
75. Kleinstiver B.P., Prew M.S., Tsai S.Q., Nguyen N.T., Topkar V.V., Zheng Z., Joung J.K. Broadening the targeting range of Staphylococcus aureus CRISPR‑Cas9 by modifying PAM recognition. Nat Biotechnol. 2015;33(12):1293–1298. DOI: 10.1038/nbt.3404
76. Porteus M. A New Class of Medicines through DNA Editing. New England Journal of Medicine. 2019;380(10):947–959. DOI: 10.1056/nejmra1800729
77. Zarubina T.V., Lukk M.V. Antihypoxic and antioxidant effects of exogenous succinic acid and aminothiol succinate‑containing antihypoxants. Buii Exp Biol. Med. 2012;153(3):336–339. DOI: 10.1007/s10517‑012‑1709‑5
78. Кондрашова М.Н., Хундерякова Н.В., Захарченко М.В. Оригинальный цитобиохимический мeтод выявления индивидуальных различий физиологического сoстояния организма по комплексной характеристике (Паттерну) активности сукцинатдегидрогеназы. Medline.ru Биомедицинский журнал. 2009;10:27–43.
79. Михин В.П. Цитопротекция в кардиологии: достигнутые успехи и перспективы. Архивъ внутренней медицины. 2014;1:44–49. [Mikhin V.P. Cytoprotection in cardiology: achieved succeesses and outlooks. The Russian Archives of internal medicine =Arkhiv vnutrennei meditsiny. 2014;1:44–49 (In Russ.)]
80. Федин А.И. Оксидантный стресс и применение антиоксидантов в неврологии. Нервные болезни. 2002;1:15–18.
81. Yellon D.M., Hausenloy D.J. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–1135. DOI: 10.1056/NEJMra071667
82. Измайлова Т., Федорова Н., Петричук С., Басаргина Е. Митохондриальные нарушения у детей с хронической сердечной недостаточностью: эффекты цитофлавина. Российский педиатрический журнал. 2012;(4):21–22.
83. Почепень О. Оценка эффективности цитофлавина при лечении токсико‑гипоксической энцефалопатии после тяжелой травмы. Журнал неврологии и психиатрии им. С.С.Корсакова. 2010;10:23–29.
84. Газизова И.Р., Тихомирова И.Ю. Роль митохондриальной дисфункции при глаукоме. Медицинский вестник Башкортостана. 2015;10(2):153–156.
85. Гусев А.Н., Красногорская В.Н., Сорокина Е.В., Гусева Е.В. Результаты лечения глаукомной оптической нейропатии с использованием препаратов Цитофлавин и Комбилипен. Современные технологии в офтальмологии. 2015;2:154–155.
86. Малишевская Т.Н., Юсупов А.Р., Шатских С.В., Филиппова Ю.Е., Антипина Н.А., Клиндюк Т.С., Богданова Д.С., Кондратьева Л.А. Исследование эффективности и безопасности применения препарата Цитофлавин у пациентов с первичной открытоугольной глаукомой. Вестник офтальмологии. 2019;135(2):83–92.
Рецензия
Для цитирования:
Газизова И.Р., Мазунин И.О., Малишевская Т.Н., Киселева О.А., Гаджиев А.М., Ринджибал А. Митохондриальная ДНК как фактор развития глаукомной оптической нейропатии. Офтальмология. 2019;16(4):479-486. https://doi.org/10.18008/1816-5095-2019-4-479-486
For citation:
Gazizova I.R., Mazunin I.O., Malishevskaya T.N., Kiseleva O.A., Gadzhiev A.M., Rindzhibal A. Mitochondrial DNA as a Factor of Glaucomous Optic Neuropathy’s Development Mechanism. Ophthalmology in Russia. 2019;16(4):479-486. (In Russ.) https://doi.org/10.18008/1816-5095-2019-4-479-486