Preview

Ophthalmology in Russia

Advanced search

Issues of Supplemental Support in Pediatric Ophthalmology

https://doi.org/10.18008/1816-5095-2020-3-309-320

Abstract

The ophthalmologist often raises the issues about using of various vitamins, trace elements and other nutrients for the prevention and treatment of the different ocular diseases at their practice. The significance of this problem is caused by the importance of the vision for the socialization of modern person, as well as the high intensity of the visual analyzer using both in the process of performing professional occupation and in the usual indoor/outdoor activities. The issues of the supplemental support in pediatric ophthalmology are especially important, as today formation of the visual organ in children develops under increased visual stress. For the total population, including children, of the industrialized countries the most typical form of vitamin deficiency is subnormal vitamin supply, which occurs among almost healthy children of different ages. The supplemental support issues should be considered in relation to certain types of ocular pathology in children. The most common problem today among children is myopia with projected high increase of this refraction anomaly magnitude in the future. The oxidative stress is the main pathogenesis factor of many degenerative diseases development, including myopia. It is considered as the oxidative stress is realized due to both endogenous processes and various external factors impact, including ultraviolet radiation. Not only vitamins with antioxidant properties (A, C, E), but the trace elements (zinc and copper), bioflavonoids (anthocyanoides) and xanthophilic pigments (lutein, zeaxanthin) are necessary to stabilize myopia and to prevent the development of degenerative diseases in adulthood. These substances are involved in the most important physiological and biosynthetic processes in the sclera, retina and other eye structures and render an influence on its microvessels and hemodynamics in general. All these substances are not synthesized in the human body, and in order to maintain metabolism and homeostasis the sufficient alimentary intake should be provided beginning with early age. The complex drugs, which include multipotential and synergistic active substances, are of particular interest.

About the Author

I. A. Gndoyan
Volgograd State Medical University
Russian Federation

MD, Professor of ophthalmology department,

Pavshih bortsov sq., 1, Volgograd, 400161



References

1. Colen J. Prevalent eye diseases in children. Journal of optometry = Vestnik optometrii. 2011;1:34–38 (In Russ.).

2. Ladodo K.S., Spirichev V.B. Vitamins and children’ health. Pediatry = Pediatria. 1987;3:5–10 (In Russ.).

3. VISION 2020: Global Initiative for the Elimination of Avoidable Blindness: action plan 2006–2011. WHO Library Cataloguing-in-Publication Data. Available: https://www.iapb.org/wp-content/uploads/VISION-2020-Action-Plan-2006-2011

4. Fomon S.J. Nutrition of normal infants. St. Louis: Mosby, 1993. 475 p.

5. Katsnel’son A.B. Vitamins in physiology and vitamin deficiency in the pathology of the visual organ. Leningrad: Medgiz, 1960. 150 p. (In Russ.).

6. Kukes V.G., Tutel’jan V.A. Vitamins and trace elements in clinical pharmacology. Мoscow: Paleja, 2001. 558 p. (In Russ.).

7. Gromov I.A., Torshkhoeva R.M, Namazova L.S. Relevance of using polyvitamins in Russia today. Pediatric pharmacology = Pediatricheskaya farmakologiya. 2008;5(2):100–102 (In Russ.).

8. Zaharova I.N., Svincickaja V.I. The use of antioxidant vitamins in pediatric practice. Practitioner = Lechashhij vrach. 2010;8:45–47 (In Russ.).

9. Tarutta E.P., Iomdina E.N., Tarasova N.A. Complex approach to the prevention and treatment of progressive myopia in school children. Russian Medical Journal. Clinical Ophthalmology = Rossijskiy medicinskiy zhurnal. Klinicheskaya oftal’mologiya. 2018;2:70–76 (In Russ.). DOI: 10.21689/2311-7729-2018-18-2-70-76

10. Schmid K. Myopia Manual: An impartial documentation of all the reasons, therapies and recommendations. Pagefree Publishing, 2018. 378 р.

11. Flitcroft D.I. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog. Retin. Eye Res. 2012;31(6):622–660. DOI: 10.1016/j.preteyeres.2012.06.004

12. Morgan I.G. The biological basis of myopic refractive error. Clin. Exp. Optom. 2003;86(5):276–288. DOI: 10.1111/j.1444-0938.2003.tb03123.x

13. Tarutta E.P. Potentialities of preventing progressive and complicated myopia in the light of present-day knowledge. The Russian Annals of Ophthalmology = Vestnik oftalmologii. 2006;122(1):43–47 (In Russ.).

14. Bosch-Morell F., Mérida S., Navea A. Oxidative Stress in Myopia. Oxidative Medicine and Cellular Longevity. Volume 2015, open access. DOI: 10.1155/2015/750637

15. Matveev A.V., Guseva M.R., Markova E.Yu. Correction of oxidative stress and hemodynaic changes in the children presenting myopia and accommodation disorders. Russian pediatric ophthalmology = Rossiyskyja pediatricheskaya oftal’mologiya. 2012;1:25–28 (In Russ.).

16. Edwards M.H., Leung S.S.F., Lee W.T.K. Do variations in normal nutrition play a role in the development of myopia? Optom. Vis. Sci. 1996;73(10):638–643. DOI: 10.1097/00006324-199610000-00002

17. Vinetskaja M.I.. Iomdina E.N. Research of trace elements in the lacrimal fluid in some eye diseases. The Russian Annals of Ophthalmology = Vestnik oftalmologii. 1994;110(4):24–26 (In Russ.).

18. Qiang M., Zhao R. A logistic regression analysis of relations between juvenile myopia and TV‐watching, trace elements, and psychological characteristics. Zhonghua Yu Fang Yi Xue Za Zhi. 1991;25(4):222–224.

19. Shiue C., Ko L.S. Study on serum copper and zinc levels in high myopia. Acta Ophthalmologica. 1988;Supplement 185:141–142. DOI: 10.1111/j.1755-3768.1988.tb02691.x

20. Fedor M., Socha K., Urban B. Serum concentration of zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Biol. Trace Elem. Res. 2017;176;:1–9. DOI: 10.1007/s12011-016-0805-1

21. Avetisov E.S., Vinetskaia M.I., Iomdina E.N. Copper metabolism in scleral tissue and possibilities of its correction in myopia. The Russian Annals of Ophthalmology = Vestnik Oftalmologii. 1991;107:31–34 (In Russ.).

22. Avetisov E., Tarutta E.P., Iomdina E., Vinetskaya M., Andreyeva L. A New Composition for the Treatment of Progressive Myopia and Its Efficiency. In: Tokoro T. (eds) Myopia Updates: Proceedings of the 6th International Conference on Myopia. Tokyo: Springer, 1998. DOI: 10.1007/978-4-431-66959-3_42

23. Tuormaa T.E. Adverse Effects of Zinc Deficiency: A Review from the Literature. Journal of Orthomolecular Medicine. 1995;10(3–4):149–164.

24. Bryce-Smith D: Zinc deficiency — the neglected factor. Chemistry in Britain. 1989;August:783–786.

25. Riordan J.F. Biochemistry of zinc. Med. Clin. North. Am. 1976;60(4):661–674. DOI: 10.1016/S0025-7125(16)31851-X

26. Swinkels J.W., Kornegay E.T., Verstegen M.W. Biology of zinc and biological value of dietary organic zinc complexes and chelates. Nutr. Res. Rev. 1994;7(1):129–149. DOI: 10.1079/NRR19940009

27. Flynn A., Strain W.H., Porles W.J. Corticotrophin dependency on zinc ions. Biochem. Biophys. Res. Commun. 1972;46(3):1113–1119. DOI: 10.1016/s0006291x(72)80089-5

28. Pfeiffer C.C., Braveman E.R. Zinc, brain and behavior. Biolog. Psychiatry. 1982;17(4):513–532.

29. Sandstead H.H. Zinc: essentiality for brain development and function. Nutr. Rev. 1985; 43(5):130–137. DOI: 10.1111/j.1753-4887.1985.tb06889.x

30. McBrien N.A., Jobling A.I., Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom. Vis. Sci. 2009;86:23–30. DOI: 10.1097/OPX.0b013e3181940669

31. Summers-Rada J., Shelton S., Norton T.T. The sclera and myopia. Exp. Eye Res. 2006;82:185–200. DOI: 10.1016/j.exer.2005.08.009

32. Yanagisawa H. Zinc deficiency and clinical practice-validity of zinc preparations. Yakugaku Zasshi. 2008;128(3):333–339. DOI: 10.1248/yakushi.128.333

33. Harris E.D., Rayton J.K., Balthrop J.E. Copper and the synthesis of elastin and collagen. CIBA Found. Symp. 1980;79:163–182. DOI: 10.1002/9780470720622.ch9

34. Powell S.R. The antioxidant properties of zinc. J. Nutr. 2000;130(5):1447–1454. DOI: 10.1093/jn/130.5.1447S

35. Fedor M., Urban B., Socha K. Concentration of zinc, copper, selenium, manganese, and Cu/Zn ratio in hair of children and adolescents with myopia. Journal of Ophthalmology. 2019;2019:5643848-7. DOI: 10.1155/2019/5643848, Open Access

36. Huibi X., Kaixun H., Quihua G. Prevention of axial elongation in myopia by the trace element zinc. Biol. Trace Elem. Res. 2001;79(1):39–47. DOI: 10.1385/BTER:79:1:39

37. Silverstone B.Z. Effects of zinc and copper metabolism in highly myopic patients. CIBA Found. Symp. 1990;155:210–221. DOI: 10.1002/9780470514023.ch12

38. Stavitskaya T.V. Extracts of Vaccinium myrtillus in the ophthalmology. Russian Medical Journal. Clinical Ophthalmology = Rossijskij medicinskij zhurnal. Klinicheskaya oftal’mologiya. 2002;2:86–87 (In Russ.).

39. Sudovskaya T.V., Kiseleva T.N. The effect of Strix Otlichnik antioxidant complex on the visual function and eye hemodynamics in myopic children and teenagers. Russian ophthalmological journal = Rossijskij oftal’mologicheskij zhurnal. 2011;3:64–67 (In Russ.).

40. Nagorskii P.G. Usage of antioxidants in the complex treatment of computer visual syndrome. Russian Medical Journal. Clinical Ophthalmology = Rossijskij medicinskij zhurnal. Klinicheskaya oftal’mologiya. 2006;1:38–40 (In Russ.).

41. Bomser J., Madhavi D.L., Singletary K., Smith M.A. In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Med. 1996;62(3):212–216. DOI: 10.1055/s-2006-957862

42. Rao C.N., Rao V.H., Steinmann B. Bioflavonoid mediated stabilization of collagen in adjuvant‐induced arthritis. Scand. J. Rheumatol.1983;12(1):39–42.

43. Miskulin M., Godeau G., Tixier A.M., et al. Experimental study of the effects of cyanoside chloride on collagen, and its potential value in ophthalmology. J. Fr. Ophtalmol. 1984;7(11):737–743. 44. Algan B. The treatment of progressive malignant myopia with magnesium chelates of flavones. A propos of 400 cases. Bull. Soc. Belge Ophtalmol. 1981;192:103–112.

44. Nakaishi H., Matsumoto H., Tominaga S., Hirayama M. Effects of black current anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern. Med. Rev. 2000;5(6):553–562.

45. Lee J., Lee H. K., Kim C. Y. Purified high-dose anthocyanoside oligomer administration improves nocturnal vision and clinical symptoms in myopia subjects. British Journal of Nutrition. 2005;93(6):895–899. DOI: 10.1079/bjn20051438

46. Omar I.A.N. Effect of bilberry extract on slowing high-myopia progression in children: 2-year follow-up study. Clinical Ophthalmology. 2018;12:2575–2579. DOI: 10.2147/OPTH.S187949

47. Kamiya K., Kobashi H., Fujiwara K., Ando W. Effect of fermented bilberry extracts on visual outcomes in eyes with myopia: a prospective, randomized, placebo-controlled study. Journal of Ocular Pharmacology and Therapeutics. 2013;29(3):356– 359. DOI: 10.1089/jop.2012.0098

48. Gndoyan I.A., Petrayevsky A.V. The significance of anthocyanosides in complex therapy of myopia. Point of view. East–West = Tochka zreniya. Vostok-Zapad. 2018;4:87–89 (In Russ.). DOI: 10.25276/2410-1257-2018-4-87-89

49. Tarutta E.P., Iomdina E.N., Tarasova N.A. Nonsurgical treatment of progressive myopia. Russian Medical Journal. Clinical Ophthalmology = Rossijskij medicinskij zhurnal. Klinicheskaya oftal’mologiya. 2016;16(4):204–210 (In Russ.). DOI: 10.21689/2311-7729-2016-16-4-204-210

50. Shikh E.V. Vitamins with antioxidant effects in prophylaxis and treatment of acute respiratory infections in children. Current Pediatrics = Voprosy sovremennoi pediatrii. 2013;12 (4):142–147 (In Russ.).

51. Frei B., Stocker R., Ames B.N. Antioxidant defenses and lipid peroxidation in human blood plasma. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(24):9748–9752. DOI: 10.1073/pnas.85.24.9748

52. Johnson E.J., Russell R.M. Beta-Carotene. In: Coates P.M., Betz J.M., Blackman M.R., et al. (eds.). Encyclopedia of Dietary Supplements. 2nd ed. London and New York: Informa Healthcare; 2010:115–120.

53. Ross A. Vitamin A. In: Coates P.M., Betz J.M., Blackman M.R. (eds). Encyclopedia of Dietary Supplements. 2nd ed. London and New York: Informa Healthcare; 2010:778–791.

54. Shashkina M.Y., Shashkin P.N., Sergeev A.V. Carotenoids as a base for development of cancer chemoprevention. Russian biotherapeutic journal = Rossijskij bioterapevticheskij zhurnal. 2009;8(4):91–98 (In Russ.).

55. Sommer A. Preventing blindness and saving lives: the centenary of vitamin A. JAMA Ophthalmol. 2014;132(1):115–117. DOI: 10.1001/jamaophthalmol.2013.5309

56. Egorov E.A., Astakhov Y.S., Stavitskaya T.V. Ophthalmopharmacology. Moscow: GeOTAR-MED, 2004. 464 p. (In Russ.).

57. Foster A., Sommer A. Corneal ulceration, measles, and childhood blindness in Tanzania. Br. J. Ophthal. 1987;71(5):331–343. DOI: 10.1136/bjo.71.5.331

58. Segun B., Martin M , Meremikwu R. Routine vitamin A supplementation for the prevention of blindness due to measles infection in children. Cochrane Systematic Review — Intervention Version published: 2011;13(4):CD007719. DOI: 10.1002/14651858.CD007719.pub2

59. Mayo-Wilson E., Imdad A., Marshall K.H. Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: systematic review and meta-analysis. BMJ. 2011;343:d5094 DOI: 10.1136/bmj.d5094

60. Mertz J.R., Wallman J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp. Eye Res. 2000;70:519–527. DOI: 10.1006/exer.1999.0813. Available online at http://www.idealibrary.com on

61. Harper A.R., Wang X., Moiseyev G. Postnatal chick choroids exhibit increased retinaldehyde dehydrogenase activity during recovery from form deprivation induced myopia. Invest. Ophthalmol. Vis. Sci. 2016;57(11):4886–4897. DOI: 10.1167/iovs.16-19395

62. Padayatty S.J., Katz A., Wang Y. Vitamin C as an antioxidant: evaluation of its role in disease prevention. Am. Coll. Nutr. 2003;22(1):18–35. DOI: 10.1080/07315724.2003.10719272

63. Berg R.A., Kerr J.S. Nutritional aspects of collagen metabolism. Annu. Rev. Nutr. 1992;12:369–390. DOI: 10.1146/annurev.nu.12.070192.002101

64. Chesnokova N.B. The value of some micronutrients in age-related eye diseases. Ophthalmology in Russia = Oftal’mologija. 2005;2:59–61 (In Russ.).

65. Guseva M.I., Sidorenko E.I., Markova E.Yu., et al. The role of the «Lutein Complex for children» in the treatment of eye diseases. Russian pediatric ophthalmology = Rossijskaja pediatricheskaja oftal’mologija. 2013;1:53–65 (In Russ.)

66. Neal M.J., Cunningham J.R. Release of endogenous ascorbic acid preserves extracellular dopamine in the mammalian retina. Invest. Ophthalmol. Vis. Sci. 1999;40(12):2983–2987.

67. Brigelius-Flohe R., Traber M.C. Vitamin E: function and metabolism. FASEB Journal. 1999;13:1145–1155. DOI: 10.1096/fasebj.13.10.1145

68. Mervyn L. Thorsons complete Guide to vitamins and minerals. London: Thorsons, 2000. 384 p.

69. Rosenlund H., Magnusson J., Kull I. Antioxidant intake and allergic disease in children. Clin. Exp. Allergy. 2012;42(10):1491–1500. DOI: 10.1111/j.13652222.2012.04053.x

70. Martin A., Janigian D., Shukitt-Hale B. Effect of vitamin E intake on levels of vitamins E and C in the central nervous system and peripheral tissues: implications for health recommendations. Brain Res. 1999;845(1):50–59. DOI: 10.1016/s0006-8993(99)01923-x

71. Chow C.K., Hong C.B. Dietary vitamin E and selenium and toxicity of nitrite and nitrate. Toxicology. 2000;180(2):195–207. DOI: 10.1016/s0300-483x(02)00391-8

72. Amemiya T. The eye and nutrition. Jpn. J. Ophthalmol. 2000.;44(3):320. DOI: 10.1016/S0021-5155(00)00161-1

73. Du Y., Miller. C.M., Kern T.S. Hyperglycemia increases mitochondrial superoxide in retina and retina cells. Free Radic. Biol. Med. 2003;35:1491–1499. DOI: 10.1016/j.freeradbiomed.2003.08.018

74. Bhutto I.A., Amemiya T. Retinal vascular architecture is maintained in retinal degeneration: corrosion cast and electron microscope study. Eye. 2001;15(Pt4):531– 538. DOI: 10.1038/eye.2001.168

75. Egorov E.A. Pathogenetic approaches to the treatment of age-related macular degeneration. Russian Medical Journal. Clinical Ophthalmology = Rossijskij medicinskij zhurnal. Klinicheskaya oftal’mologiya. 2017;4:1–4 (In Russ.).

76. Gndoyan I.A., Petrayevsky A.V., Kuznetsova N.A., Dyatchina A.I. Monitoring of functional parameters in the patients with early stage of age-related macular degeneration. Ophthalmology in Russia = Oftal’mologija. 2017;15(3):260–267 (In Russ.). DOI: 10.18008/1816-5095-2017-3-260-267

77. Zimmer J.P., Hammond B.R. Possible influences of lutein and zeaxanthin on the developing retina. Clinical Opthalmology. 2007;1(1):25–35.

78. Bernstein P., Khachik F., Carvalho L., et al. Identification and quantification of carotenoids and their metabolites in the tissues of the human eye. Exp. Eye Res. 2001;72:215–223. DOI: 10.1006/exer.2000.0954

79. Mares J. Lutein and zeaxanthin isomers in eye health and disease. Annu. Rev. Nutr. 2016;36:571–602. DOI: 10.1146/annurev-nutr-071715-051110

80. Bone R.A., Landrum J.T., Hime G.W. Stereochemistry of the human macular carotenoids. Invest. Ophthalmol. Vis. Sci. 1993;34:2033–2040.

81. Landrum J.T., Bone R.A., Chen Y. Carotenoids in the human retina. Pure Appl. Chem. 1999;71:2237–2244.

82. Bone R., Landrum J., Fernandez L. Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest. Ophthalmol. Vis. Sci. 1988;29:843–849.

83. Teller D. First glances: The vision of infants. Invest. Ophthalmol. Vis. Sci. 1997;38:2183–2203.

84. Snodderly D.M., Auran J., Delori F. The macular pigment. II. Spatial distribution in primate retinas. Invest. Ophthalmol. Vis. Sci. 1984;25:674–685.

85. Hardy P., Dumont I., Bhattacharya M., et al. Oxidants, nitric oxide and prostanoids in the developing ocular vasculature: a basis for ischemic retinopathy. Cardiovasc. Res. 2000;47:489–509. DOI: 10.1016/S0008-6363(00)00084-5

86. Kim S., Nakanishi K., Itagaki Y. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp. Eye Res. 2006; 82:828–839. DOI: 10.1016/j.exer.2005.10.004

87. Sparrow J., Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp. Eye Res. 2005;80:595–606. DOI: 10.1016/j.exer.2005.01.007

88. Leung I.Y., Sandstrom M.M., Zucker C.L. Nutritional manipulation of primate retinas, II: effects of age, n-3 fatty acids, lutein, and zeaxanthin on retinal pigment epithelium. Invest. Ophthalmol. Vis Sci. 2004;45(9):3244–3256. DOI: 10.1167/iovs.021233

89. Feeney-Burns L., Hilderbrand E., Eldridge S. Aging human RPE: Morphometric analysis of macular, equitorial and peripheral cells. Invest. Ophthalmol. Vis. Sci. 1984;25:195–200.

90. Kirpichenkova E.V., Korolev A.A., Onishhenko G.G. Study of lutein and zeaxanthin content in the diet with the assessment of the relationship between the level of alimentary intake of non-vitamin carotenoids and the density of the macular region of the retina at a young age. Problems of Nutrition = Voprosy pitanija. 2018;87(5):20–26 (In Russ.) DOI: 10.24411/00428833-2018-10049

91. Vital-Durand F., The infant’s vision and light — The role of prevention in preserving visual capacity. Points de Vue. International Review of Ophthalmic Optics. 2014;71. Available at https://www.semanticscholar.org/author/Fran %C3%A7ois-Vital-Durand/49129221

92. Fishman G.A. Ocular phototoxicity: Guidelines for selecting sunglasses. Surv. Ophthalmol. 1986;31:119–124. DOI: 10.1016/0039-6257(86)90079-2

93. Werner J.S. Children’s sunglasses: caveat emptor. Optom. Vis. Sci. 1991;68:318–320. DOI: 10.1097/00006324-199104000-00010

94. Young S., Sands J. Sun and the eye: prevention and detection of light-induced disease. Clin. Dermatol. 1998;16:477–485. DOI: 10.1016/s0738-081x(98)00021-2

95. Kon’ I.Ya. Modern ideas about the role of lutein carotenoids in the nutrition of young children. Pediatry = Pediatrija. 2012;91(1):96–102 (In Russ.).

96. Neuringer M., Wallace P., Billingslea A. Incidence of drusen-like changes in a rhesus monkey colony: Effects of age, gender and dietary carotenoids. Invest. Ophthalmol. Vis. Sci. 2003;44:4949.

97. Jewell V.C., Mayes C.B.D., Tubman T.R.J. A comparison of lutein and zeaxanthin concentrations in formula and human milk samples from Northern Ireland mothers. Eur. J. Clin. Nutr. 2004;58:90–97. DOI: 10.1038/sj.ejcn.1601753

98. Scientific Opinion. Safety, bioavailability and suitability of lutein for the particular nutritional use by infants and young children: Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies. The EFSA Journal. 2008;823:1–24. Open Access, first published in the EFSA Journal: 14 November 2008, adopted: 2 October 2008. DOI: 10.2903/j.efsa.2008.823

99. Wegmüller R., Tay F., Zeder C. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. J. Nutr. 2014;144:132–136. DOI: 10.3945/jn.113/181487


Review

For citations:


Gndoyan I.A. Issues of Supplemental Support in Pediatric Ophthalmology. Ophthalmology in Russia. 2020;17(3):309-320. (In Russ.) https://doi.org/10.18008/1816-5095-2020-3-309-320

Views: 1176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)