Structural and Functional Disorders in Glaucoma: Prospects for Preclinical Diagnosis. Part 2. Electrophysiological Markers of Early Neuroplastic Events
https://doi.org/10.18008/1816-5095-2020-3S-533-541
Abstract
About the Authors
V. V. NeroevRussian Federation
MD, Professor, Corresponding Member of the Russian Academy of Sciences, Director of the Institute, Head of the Department of pathology of the retina and optic nerve
Sadovaya‑Chernogriazskaya str., 14/19, 105062, Moscow, Russian Federation
M. V. Zueva
Russian Federation
Professor, Dr. of Biological Sciences, Head of the Department of clinical physiology of vision named after S.V. Kravkov
Sadovaya‑Chernogriazskaya str., 14/19, 105062, Moscow, Russian Federation
A. N. Zhuravleva
Russian Federation
PhD, Researcher of the Department of glaucoma
Sadovaya‑Chernogriazskaya str., 14/19, 105062, Moscow, Russian Federation
I. V. Tsapenko
Russian Federation
Candidate of Biological Sciences, senior researcher of the Department of clinical physiology of vision named after S.V. Kravkov
Sadovaya‑Chernogriazskaya str., 14/19, 105062, Moscow, Russian Federation
References
1. Neroev V.V., Zueva M.V., Zhuravleva A.N., Tsapenko I.V. Structural and functional disorders in glaucoma: the prospects for preclinical diagnosis. Part 1. How relevant is the search for what comes first? Ophthalmology in Russia = Oftal’mologiya. 2020;17(3):336–343 (In Russ.).
2. Crish S.D., Sappington R.M., Inman D.M., Horner P.J., Calkins D.J. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc. Natl. Acad. Sci. USA. 2010; 107:5196–5201. DOI: 10.1073/pnas.0913141107
3. Calkins D.J., Horner P.J. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest. Ophthalmol. Vis. Sci. 2012;53:2482–2484. DOI: 10.1167/iovs.12‑9483i
4. Calkins D.J. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog. Retin. Eye Res. 2012;31:702–719. DOI: 10.1016/j.preteyeres.2012.07.001
5. Porciatti V., Ventura L.M. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol. 2012;32(4):354–358. DOI: 10.1097/WNO.0b013e3182745600
6. Crish S.D., Dapper J.D., MacNamee S.E., Balaram P., Sidorova T.N., Lambert W.S., Calkins D.J. Failure of axonal transport induces a spatially coincident increase in astrocyte BDNF prior to synapse loss in a central target. Neuroscience 2013;229:55–70. DOI: 10.1016/j.neuroscience.2012.10.069
7. Zueva M.V. Dynamics of retinal ganglion cell death in glaucoma and its functional markers. National Journal glaucoma = Natsional’nyi zhurnal glaucoma. 2016;15(1):70–85 (In Russ.).
8. Howell G.R., Libby R.T., Jakobs T.C., Smith R.S., Phalan F.C., Barter J.W., Barbay J.M., Marchant J.K., Mahesh N., Porciatti V., Whitmore A.V., Masland R.H., John S.W. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell Biol. 2007;179:1523–1537. DOI: 10.1083/jcb.200706181
9. Soto I., Oglesby E., Buckingham B.P., Son J.L., Roberson E.D., Steele M.R., Inman D.M., Vetter M.L., Horner P.J., Marsh‑Armstrong N. Retinal ganglion cells down‑regulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci. 2008;28:548 –561. DOI: 10.1523/JNEUROSCI.3714‑07.2008
10. Baltan S., Inman D.M., Danilov C.A., Morrison R.S., Calkins D.J., Horner P.J. Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration. J. Neurosci. 2010;30:5644–5652. DOI: 10.1523/JNEUROSCI.5956‑09.2010
11. Cone F.E., Gelman S.E., Son J.L., Pease M.E., Quigley H.A. Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res. 2010;91:415–424. DOI: 10.1016/j.exer.2010.06.018
12. Sappington R.M., Carlson B.J., Crish S.D., Calkins D.J. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest Ophthalmol Vis Sci. 2010;51:207–216. DOI: 10.1167/iovs.09‑3947
13. Chen H., Wei X., Cho K.S., Chen G., Sappington R., Calkins D.J., Chen D.F. Optic neuropathy due to microbead‑induced elevated intraocular pressure in the mouse. Invest. Ophthalmol. Vis. Sci. 2011;52:36–44. DOI: 10.1167/iovs.09‑5115
14. Lambert W.S., Ruiz L., Crish S.D., Wheeler L.A., Calkins D.J. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol. Neurodegener. 2011;6:4. DOI: 10.1186/1750‑1326‑6‑4
15. Harwerth R.S., Crawford M.L., Frishman L.J., Viswanathan S., Smith E.L. 3rd, Carter‑Dawson L. Visual field defects and neural losses from experimental glaucoma. Prog. Retin. Eye Res. 2002;21:91–125.
16. Gupta N., Yucel Y.H. Brain changes in glaucoma. Eur. J. Ophthalmol.2003;13(3):S32–S35.
17. Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Effects of retinal ganglion cell loss on magno‑, parvo‑, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog. Retin. Eye Res. 2003;22:465–481.
18. Gupta N., Ang L.C., Noel de Tilly L., Bidaisee L., Yucel Y.H. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br. J. Ophthalmol. 2006;90(6):674–678. DOI: 10.1136/bjo.2005.086769
19. Weber A.J., Chen H., Hubbard W.C., Kaufman P.L. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest. Ophthalmol. Vis. Sci. 2000;41:1370–1379.
20. Viswanathan S., Frishman L.J., Robson J.G. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest. Ophthalmol. Vis. Sci. 2000; 41(9):2797–2810.
21. Saleh M., Nagaraju M., Porciatti V. Longitudinal evaluation of retinal ganglion cell function and IOP in the DBA/2J mouse model of glaucoma. Invest. Ophthalmol. Vis. Sci. 2007;48:4564–4572. DOI: 10.1167/iovs.07‑0483
22. Buckingham B.P., Inman D.M., Lambert W., Oglesby E., Calkins D.J., Steele M.R., Vetter M.L., Marsh‑Armstrong N., Horner P.J. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J. Neurosci. 2008; 28:2735–2744. DOI: 10.1523/JNEUROSCI.4443‑07.2008
23. Holcombe D.J., Lengefeld N., Gole G.A., Barnett N.L. Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br. J. Ophthalmol. 2008;92:683–688. DOI: 10.1136/bjo.2007.133223
24. Bach M., Hoffmann M.B. Update on the pattern electroretinogram in glaucoma. Optom. Vis. Sci. 2008;85:386–395. DOI: 10.1097/opx.0b013e318177ebf3
25. Nagaraju M., Saleh M., Porciatti V. IOP‑dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Invest. Ophthalmol. Vis. Sci. 2007;48:4573–4579. DOI: 10.1167/iovs.07‑0582
26. Porciatti V., Nagaraju M. Head‑up tilt lowers IOP and improves RGC dysfunction in glaucomatous DBA/2J mice. Exp. Eye Res. 2010;90:452–460. DOI: 10.1016/j.exer.2009.12.005
27. Fortune B., Burgoyne C.F., Cull G.A., Reynaud J., Wang L. Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2012;53:3939–3950. DOI: 10.1167/iovs.12‑9979
28. Frankfort B.J., Khan A.K., Tse D.Y., Chung I., Pang J.J., Yang Z., Gross R.L., Wu S.M. Elevated intraocular pressure causes inner retinal dysfunction before cell loss in a mouse model of experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2013;54:762–770. DOI: 10.1167/iovs.12‑10581
29. Yucel Y., Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res. 2008;173:465–478. DOI: 10.1016/S0079‑6123(08)01132‑1
30. Porciatti V., Ventura L.M. Physiological significance of steady‑state PERG losses in glaucoma: clues from simulation of abnormalities in normal subjects. J. Glaucoma. 2009;18(7):535–542. DOI: 10.1097/ijg.0b013e318193c2e1
31. Ventura L.M., Sorokac N., De Los Santos R., Feuer W.J., Porciatti V. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest. Ophthalmol. Vis. Sci. 2006;47(9):3904–3911. DOI: 10.1167/iovs.06‑0161
32. Banitt M.R., Ventura L.M., Feuer W.J., Savatovsky E., Luna G., Shif O., Bosse B., Porciatti V. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest. Ophthalmol. Vis. Sci. 2013;54:2346–2352. DOI: 10.1167/iovs.12‑11026
33. Morgan J.E., Tribble J.R. Microbead models in glaucoma. Exp. Eye Res. 2015;141:9–14. DOI: 10.1016/j.exer.2015.06.020
34. Santina L.D., Inman D.M., Lupien C.B., Horner F.J., Wong R.O.L. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci. 2013;33(44):17444–17457. DOI: 10.1523/JNEUROSCI.5461‑12.2013
35. Lacor P.N., Buniel M.C., Furlow P.W., Clemente A.S., Velasco P.T., Wood M., Viola K.L., Klein W.L. Abeta oligomer‑induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 2007;27:796–807. DOI: 10.1523/JNEUROSCI.3501‑06.2007
36. Yoshiyama Y., Higuchi M., Zhang B., Huang S.M., Iwata N., Saido T.C., Maeda J., Suhara T., Trojanowski J.Q., Lee V.M. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–351. DOI: 10.1016/j.neuron.2007.01.010
37. Liu M., Duggan J., Salt T.E., Cordeiro M.F. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp. Eye Res. 2011;92:244–250. DOI: 10.1016/j.exer.2011.01.014
38. Pavlidis M., Stupp T., Naskar R., Cengiz C., Thanos S. Retinal ganglion cells resistant to advanced glaucoma: a postmortem study of human retinas with the carbocyanine dye DiI. Invest. Ophthalmol. Vis Sci. 2003;44:5196–5205. DOI: 10.1167/iovs.03‑0614
39. Jakobs T.C., Libby R.T., Ben Y., John S.W., Masland R.H. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J. Cell Biol. 2005;171:313–325. DOI: 10.1083/jcb.200506099
40. Shou T., Liu J., Wang W., Zhou Y., Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest. Ophthalmol. Vis. Sci 2003;44:3005–3010. DOI: 10.1167/iovs.02‑0620
41. Weber A.J., Kaufman P.L., Hubbard W.C. Morphology of single ganglion cells in the glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 1998;39:2304–2320.
42. Morquette J.B., Di Polo A. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon? J. Neuroophthalmol. 2008;28:144–154. DOI: 10.1097/wno.0b013e318177edf0
43. Yucel Y.H., Gupta N., Zhang Q., Mizisin A.P., Kalichman M.W., Weinreb R.N. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch. Ophthalmol. 2006;124:217–225. DOI: 10.1001/archopht.124.2.217
44. Gupta N., Zhang Q., Kaufman P.L., Weinreb R.N., Yucel Y.H. Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp. Eye Res. 2007;84:176–184. DOI: 10.1016/j.exer.2006.09.013
45. Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yucel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011;51(2):243–250. DOI: 10.1016/j.visres.2010.08.003
46. Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin. Exp. Ophthalmol. 2012;40:364–368. DOI: 10.1111/j.1442‑9071.2012.02789.x
47. Wilsey L.J., Fortune B. Electroretinography in glaucoma diagnosis. Curr. Opin. Ophthalmol. 2016;27(2):118–124. DOI: 10.1097/ICU.0000000000000241
48. North R.V., Jones A.L., Drasdo N., Wild J.M., Morgan J.E. Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. Invest. Ophthalmol. Vis. Sci. 2010;51:1216–1222. DOI: 10.1167/iovs.09‑3409
49. Bach M., Unsoeld A.S., Philippin H., Staubach F., Maier P., Walter H.S., Bomer T.G., Funk J. Pattern ERG as an early glaucoma indicator in ocular hypertension: a longterm, prospective study. Invest. Ophthalmol. Vis. Sci. 2006;47:4881–4887. DOI: 10.1167/iovs.05‑0875
50. Bach M., Ramharter‑Sereinig A. Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG Ratio protocols. Doc. Ophthalmol. 2013;127:227–238. DOI: 10.1007/s10633‑013‑9412‑z
51. Bach M., Poloshek C.M. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013;353(2):287–296. DOI: 10.1007/s00441‑013‑1598‑6
52. Bode S.F., Jehle T., Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest. Ophthalmol. Vis. Sci. 2011;52:4300–4306. DOI: 10.1167/iovs.10‑6381
53. Luo X. Frishman L.J. Retinal pathway origins of the pattern electroretinogram (PERG). Invest. Ophthalmol. Vis. Sci. 2011;52:8571–8584.
54. Feng L., Zhao Y., Yoshida M., Chen H., Yang J.F., Kim T.S., Cang J., Troy J.B., Liu X. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest. Ophthalmol. Vis. Sci. 2013;54:1106–1117. DOI: 10.1167/ iovs.12‑10791
55. Mavilio A., Scrimieri F., Errico D. Can variability of pattern ERG signal help to detect retinal ganglion cells dysfunction in glaucomatous eyes? BioMed Research International. 2015;2015:article ID 571314, 11 pages. DOI: 10.1155/2015/571314
56. Slotnick S.D., Klein S.A., Carney T., Sutter E., Dastmalchi S. Using multi‑stimulus VEP source localization to obtain a retinotopic map of human primary visual cortex. Clin. Neurophysiol. 1999;110:1793–1800.
57. Di Russo F., Martinez A., Sereno M.I., Pitzalis S., Hillyard S.A. Cortical sources of the early components of the visual evoked potential. Hum. Brain Mapp. 2002;15:95–111.
58. Viswanathan S., Frishman L.J., Robson J.G., Harwerth R.S., Smith E. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40:1124–1136.
59. Viswanathan S., Frishman L.J., Robson J.G., Walters J.W. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2001;42:514–522.
60. Rangaswamy V.N., Shirato S., Kaneko M., Digby B.I., Robson J.G., Frishman L.J. Effects of spectral characteristics of ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Invest. Ophthalmol. Vis. Sci. 2007;48(10):4818–4828. DOI: 10.1167/iovs.07‑0218
61. Sustar M., Cvenkel B., Brecelj J. The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open‑angle glaucoma patients. Doc. Ophthalmol. 2009;118:167–177. DOI: 10.1007/s10633‑008‑9150‑9
62. Colotto A., Falsini B., Salgarello T., Iarossi G., Galan M.E., Scullica L. Photopic negative response of the human ERG: losses associated with glaucomatous damage. Invest. Ophthalmol. Vis. Sci. 2000;41:2205–2211.
63. Rangaswamy N.V., Frishman L.J., Dorotheo E.U., Schiffman J.S., Bahrani H.M., Tang R.A. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest. Ophthalmol. Vis. Sci. 2004;45:3827–3837. DOI: 10.1167/iovs.04‑0458
64. Machida S., Raz‑Prag D., Fariss R.N., Sieving P.A., Bush R.A. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Invest. Ophthalmol. Vis. Sci. 2008;49:442–452. DOI: 10.1167/iovs.07‑0291
65. Machida S., Tamada K., Oikawa T., Gotoh Y., Nishimura T., Kaneko M., Kurosaka D. Comparison of photopic negative response of full‑field and focal electroretinograms in detecting glaucomatous eyes. J. Ophthalmology. 2011;2011:article ID 564131, 11 pages. DOI: 10.1155/2011/564131
66. Machida S., Kaneko M., Kurosaka D. Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma. Curr. Eye Res. 2015 Apr;40(4):439–449. DOI: 10.3109/02713683.2014.922196
67. Kaneko M., Machida S., Hoshi Y., Kurosaka D. Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr. Eye Res. 2014;40:77–86. DOI: 10.3109/02713683.2014.915575
68. Preiser D., Lagreze W.A., Bach M., Poloschek C.M. Photopic negative response versus pattern electroretinogram in early glaucoma. Invest. Ophthalmol. Vis. Sci. 2013;54:1182–1191. DOI: 10.1167/iovs.12‑11201
69. Cvenkel B., Sustar M., Perovšek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral‑domain optical coherence tomography. Doc. Ophthalmol. 2017;135(1):17–28. DOI: 10.1007/s10633‑017‑9595‑9
70. Fortune B., Bui B.V., Cull G., Wang L., Cioffi G.A. Inter‑ocular and inter‑session reliability of the electroretinogram photopic negative response (PhNR) in non-human primates. Exp. Eye Res. 2004;78:83–93. DOI: 10.1016/j.exer.2003.09.013
71. Tang J., Edwards T., Crowston J.G., Sarossy M. The test‑retest reliability of the photopic negative response (PhNR). Trans. Vis. Sci. Tech. 2014;3(6):1. eCollection 2014. DOI: 10.1167/tvst.3.6.1
72. Wu Z., Hadoux X., Hui F., Sarossy M.G., Crowston J.G. Photopic Negative Response Obtained Using a Handheld Electroretinogram Device: Determining the Optimal Measure and Repeatability. Trans Vis. Sci. Technol. 2016;5(4):8. eCollection 2016. DOI: 10.1167/tvst.5.4.8
73. Chong R.S., Martin K.R. Glial cell interactions and glaucoma. Curr. Opin. Ophthalmol. 2015;26(2):73–77. DOI: 10.1097/ICU.0000000000000125
74. Kimelberg H.K. Functions of mature mammalian astrocytes: a current view. Neuroscientist. 2010;16:79–106. DOI: 10.1177/1073858409342593
75. Morgan J.E. Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye (Lond). 2000;14(Pt 3B):437–444. DOI: 10.1038/eye.2000.128
76. Wang M., Ma W., Zhao L., Fariss R.N., Wong W.T. Adaptive Muller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation. 2011;8:173. DOI: 10.1186/1742‑2094‑8‑173
77. Lebrun‑Julien F., Duplan L., Pernet V., Osswald I., Sapieha P., Bourgeois P., Dickson K., Bowie D., Barker P.A., Di Polo A. Excitotoxic death of retinal neurons in vivo occurs via a non‑cell‑autonomous mechanism. J. Neurosci. 2009;29:5536–5545. DOI: 10.1523/JNEUROSCI.0831‑09.2009
78. Wang M., Wang X., Zhao L., Ma W., Rodriguez I.R., Fariss R.N., Wong W.T. Macroglia–microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J. Neurosci. 2014;34:3793–3806. DOI: 10.1523/JNEUROSCI.3153‑13.2014
79. Kugler P., Beyer A. Expression of glutamate transporters in human and rat retina and rat optic nerve. Histochem. Cell Biol. 2003;120:199–212. DOI: 10.1007/s00418‑003‑0555‑y
80. Pease M.E., Zack D.J., Berlinicke C., Bloom K., Cone F., Wang Y., Klein R.L., Hauswirth W.W., Quigley H.A. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2009;50:2194–2200. DOI: 10.1167/iovs.08‑3013
81. Bringmann A., Iandiev I., Pannicke T., Wurm A., Hollborn M., Wiedemann P., Osborn N.B., Reichenbach A. Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and developmental effects. Prog. Retin. Eye Res. 2009;28:423–451. DOI: 10.1016/j.preteyeres.2009.07.001
82. Gao F., Ji M., Wu J.H., Wang Z.F. Roles of retinal Müller cells in health and glaucoma [Article in Chinese]. Sheng Li Xue Bao. 2013;65(6):654–663. DOI: 10.1007/s00441‑013‑1666‑y
83. Zueva M.V., Tsapenko I.V. Muller cells: spectrum and profile of glio‑neuronal interactions in the retina. Russian Journal of Physiology = Rossiyskiy fiziologicheskiy zhurnal imeni Sechenova. 2004;90(8):435–436 (In Russ.).
84. Neroev V.V., Zueva M.V., Tsapenko I.V., Ryabina M.V., Liu Hong. Functional diagnostics of retinal ischemia: 1 — Muller cell reaction in the early stages of diabetic retinopathy. Annals of Ophthalmology = Vestnik oftal’mologii. 2004;120(5):21–24 (In Russ.).
85. Zueva M.V., Tsapenko I.V. Structural and functional organization of Müller cells: role in the development and pathology of the retina. In book: Clinical physiology of vision. Essays, ed. Shamshinova A.M. Moscow: Scientific and Medical Firm MBN, 2006:128–191 (In Russ.).
86. Zueva M.V., Neroev V.V., Tsapenko I.V., Sarygina O.I., Grinchenko M.I., Zaitseva S.I. Topographic diagnosis of retinal dysfunction in case of rhegmatogenous retinal detachment by the rhythmic ERG method of a wide range of frequencies. Russian ophthalmological journal = Rossiyskiy oftal’mologicheskiy zhurnal. 2009;1(2):18–23 (In Russ.).
87. Li H., Tran V.V., Hu Y., Saltzman W.M., Barnstable C.J., Tombran‑Tink J. A PEDF N‑terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Exp. Eye Res. 2006;83:824–833. DOI: 10.1016/j.exer.2006.04.014
88. Gwon J.S., Kim I.B., Lee M.Y., Oh S.J., Chun M.H. Expression of clusterin in Müller cells of the rat retina after pressureinduced ischemia. Glia. 2004;47:35–45. DOI: 10.1002/glia.20021
89. Pannicke T., Iandiev I., Uckermann O., Biedermann B., Kutzera F., Wiedemann P., Wolburg H., Reichenbach A., Bringmann A. A potassium channel‑linked mechanism of glial cell swelling in the postischemic retina. Mol. Cell. Neurosci. 2004;26:493–502. DOI: 10.1016/j.mcn.2004.04.005
90. Hirrlinger P.G., Ulbricht E., Iandiev I., Reichenbach A., Pannicke T. Alterations in protein expression and membrane properties during Müller cell gliosis in a murine model of transient retinal ischemia. Neurosci. Lett. 2010;472:73–78. DOI: 10.1016/j.neulet.2010.01.062
91. Wurm A., Iandiev I., Uhlmann S., Wiedemann P., Reichenbach A., Bringmann A., Pannicke T. Effects of ischemia‑reperfusion on physiological properties of Müller glial cells in the porcine retina. Invest. Ophthalmol. Vis. Sci. 2011;52:3360–3367.
92. Da T., Verkman A.S. Aquaporin‑4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Invest. Ophthalmol. Vis. Sci. 2004;45:4477–4483. DOI: 10.1167/iovs.04‑0940
93. Iandiev I., Pannicke T., Biedermann B., Wiedemann P., Reichenbach A., Bringmann A. Ischemia‑reperfusion alters the immunolocalization of glial aquaporins in rat retina. Neurosci. Lett. 2006;408:108–112. DOI: 10.1016/j.neulet.2006.08.084
94. Neroev V.V., Zueva M.V., Katargina L.A. Breakthrough Technologies in Ophthalmology: Fundamental Sciences Helping to Solve the Problems of Retinal and Optic Nerve Pathologies. Russian ophthalmological journal = Rossiyskiy oftal’mologicheskiy zhurnal. 2013;2(2):4–8 (In Russ.).
95. Lee J.H., Shin J.M., Shin Y.J., Chun M.H., Oh S.J. Immunochemical changes of calbindin, calretinin and SMI32 in ischemic retinas induced by increase of intraocular pressure and by middle cerebral artery occlusion. Anat. Cell Biol. 2011;44:25–34. DOI: 10.5115/acb.2011.44.1.25
96. Chan H.H.‑L., Ng Y.‑f., Chu P. H.‑W. Applications of the multifocal electroretinogram in the detection of glaucoma. Clin. Exp. Optom. 2011;94(3):247–258. DOI: 10.1111/j.1444‑0938.2010.00571.x
97. Hood D., Frishman LJ, Saszik S., Viswanathan S. Retinal origins of the primate multifocal ERG: implications for the human response. Invest. Ophthalmol. Vis. Sci. 2002;43:1673–1685.
98. Hood D.C., Greenstein V.C. Multifocal VEP and ganglion cell damage: Applications and limitations for the study of glaucoma. Prog. Ret. Eye Res. 2003;22:201–251.
99. Hood D.C., Zhang X., Greenstein V.C., Kangovi S., Odel J.G., Liebmann J.M., Ritch R. An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis. Sci. 2000;41:1580–1587.
100. Harrison W.W., Viswanathan S., Malinovsky V.E. Multifocal pattern electroretinogram: cellular origins and clinical implications. Optom. Vis. Sci. 2006;83:473–485. DOI: 10.1097/01.opx.0000218319.61580.a5
101. Wilsey L., Gowrisankaran S, Cull G., Hardin C., Burgoyne CF, Fortune B. Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure. Doc. Ophthalmol. 2017;134(2):111–128. DOI: 10.1007/s10633‑017‑9578‑x
Review
For citations:
Neroev V.V., Zueva M.V., Zhuravleva A.N., Tsapenko I.V. Structural and Functional Disorders in Glaucoma: Prospects for Preclinical Diagnosis. Part 2. Electrophysiological Markers of Early Neuroplastic Events. Ophthalmology in Russia. 2020;17(3s):533-541. (In Russ.) https://doi.org/10.18008/1816-5095-2020-3S-533-541