Preview

Ophthalmology in Russia

Advanced search

Modern Problems of Antibiotic Therapy in Ophthalmology and the Perspective Ways of Solution. Literature Review

https://doi.org/10.18008/1816-5095-2020-4-683-691

Abstract

To date, the problem of interaction between humans and the surrounding microbiome continues to grow in the human population, which is expressed in the so-called crisis of antibiotic resistance. Microorganisms, being pathogens of infectious diseases, no longer have guaranteed pharmacological barriers that can stop their reproduction, which means that they continue to claim thousands of lives every year. This phenomenon is associated with many reasons, such as the presence of mobile genetic elements in bacteria that perform the function of horizontal gene transfer, responsible for their resistance to antibiotics. Mutational microevolution changes in the genotype of a bacterial cell can lead to the development of uncontrolled polyresistance. Also, the combination of micro-and macroevolutionary changes in the external signs of the pathogen determines the system of factors of aggression, invasion, protection and adaptation. Other factors causing antibioticoresistance include overuse of antibiotics and self-nominations during periods of self-medication, antibiotics and medical staff in subclinical doses, too short treatment courses, and sometimes their function in the absence of indications for therapy, the extensive use of antibiotics in agriculture. A number of preventive measures that could significantly affect the crisis of antibiotic resistance are being actively worked out at the state level and include programs to reduce the free circulation of antibiotics, optimize therapeutic regimes, improve diagnostic measures for the verification of pathogens, prevent the spread of infections, optimize interaction between pharmaceutical companies and registration organizations, stimulate investment and public-private partnership, and of course the international initiative on systemic interaction. This paper examines the cause-and-effect relationships that can have a direct impact on the resolution of the crisis of antibiotic resistance, which can be traced in the historical context and up to the present time, as well as describes modern promising scientific and technical directions that can give humanity a new «Golden bullet» against pathogens, in particular the use of artificial fluorophores-quantum dots.

About the Authors

V. O. Ponomarev
Ekaterinburg Center IRTC “Eye Microsurgery”
Russian Federation

head of diagnostic department,

A. Bardin str., 4A, Ekaterinburg, 620149



V. N. Kazaykin
Ekaterinburg Center IRTC “Eye Microsurgery”
Russian Federation

MD, head of vitreoretinal department,

A. Bardin str., 4A, Ekaterinburg, 620149



O. P. Ponomarev
Ural Manufacturing Enterprise “Vector”
Russian Federation

Doctor of technical sciences, deputy director,

Gagarin str., 28, Ekaterinburg, 620078



References

1. Sengupta S., Chattopadhyay M.K., Grossart H.P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013;4:47. DOI: 10.3389 /fmicb.2013.00047

2. Gullberg E., Cao S., Berg O. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7(7): e1002158. DOI: 10.1371/journal.ppat.1002158

3. Davies J. Darwin and microbiomes. EMBO Rep. 2009;10(8):805. DOI: 10.1038/embor.2009.166

4. Fleming A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzae. Br. J. Exp. Pathol. 1929;10(3):226–236.

5. Spellberg B., Guidos R., Gilbert D. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 2008;46(2):155–164. DOI: 10.1086/524891

6. Haden H.C. Metastatic Endophthalmitis Associated by Epidemic Cerebro-Spinal Meninigitis. American Journal of Ophthalmology. 1918;1(9):647–650.

7. Sugar H.S, Zekman T. Late infection of filtering conjunctival scars. Am. J. Ophthalmol. 1958; 46(2):155–170. DOI: 10.1016/0002-9394(59)90003-0

8. Von Graefe A. Therapeutische Miscellen. Graefes Arch. Ophthalmol. 1863;9:4252.

9. Von Graefe A. Ueber operative Eingriffe in die tieferen Gebilde des Auges. B. Perforation von abgeloesten Netzhaeuten und Glaskoerpermembranen. Arch. Ophthalmol. 1863;9:85–104.

10. Kasner D. Vitrectomy: a new approach to the management of vitreous. Highlights Ophthalmol. 1968;11:304–329.

11. Kasner D., Miller G.R., Taylor W.H. Surgical treatment of amyloidosis of the vitreous. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1968;72:410–418.

12. Machemer R. A new concept for vitreous surgery. II. Surgical technique and complications. Am. J. Ophthalmol. 1972;74:1022–1033.

13. Machemer R., Buettner H., Norton E.W.D. Vitrectomy: a pars plana approach. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1971;75:813–820.

14. Machemer R., Parel J.M., Norton E.W.D. A new concept for vitreous surgery. I. Instrumentation. Am. J. Ophthalmol. Otolaryngol. 1972;10:172–177.

15. Peyman G.A., Dodich N.A. Experimental vitrectomy: instrumentation and surgical technique. Arch. Ophthalmol. 1971;86:548–551.

16. O’Malley C., Heintz R.M. Vitrectomy via the pars plana — a new instrument system. Trans. Pac. Coast Otoophthalmol. Soc. Annu. Meet. 1972;53:121–137.

17. O’Malley C., Heintz R.M. Vitrectomy with an alternative instrument system. Ann. Ophthalmol. 1975;7(4):585–588.

18. Von Sallmann L. Penicillin therapy of infections of the vitreous. Arch. Opthalmol. 1945;33:455–462.

19. Von Sallmann L., Meyer K., DiGrandi J. Experimental study on penicillin treatment of ectogenous infection of vitreous. Arch. Opthalmol. 1945;33:179–189.

20. Peyman G.A., P.J. Lee, D.V. Seal. Endophthalmitis. Diagnosis and Management. Taylor & Francis. 2004;111.

21. Irving H., Leopold I.H., Apt L. Postoperative intraocular infections. Am. J. Ophthalmol. 1960;50:1225–1247. DOI: 10.1016/0002-9394(60)91013-8

22. Anderson R.C., Higgins H.M. Jr., Pettinga C.D. Symposium: how a drug is born. Cincinnati J. Med.1961;42:49–60.

23. McGuire J.M., Wolfe R.N., Ziegler D.W. Vancomycin, a new antibiotic. II. In vitro antibacterial studies. Antibiot. Annu.1955;3:612–618.

24. Peyman G.A., Sanders D.R. Advances n Uveal surgery, Vitreous surgery, and the treatment of Endophthalmitis. Appleton-Century-Crofts: New York. 1975;184– 208.

25. Peyman G.A., Schulman J.A. Intravitreal drug therapy. Jpn. J. Ophthalmol. 1989;33(4):392–404.

26. Peyman G.A., Schulman J.A. Intravitreal surgery: Principles and Practice 2 nd edn. Appleton & Lange: Norwalk, CT. 1994;851–922.

27. Peyman G.A., Vastine D.W., Raichard M. Postoperative endopthalmitis: experimental aspects and their clinical applications. Ophthalmology.1978;85:374–385.

28. Pflugfelder S.C., Hernandez E., Fliesler S.J. Intravitreal vancomycin. Retinal toxicity, clearance, and interaction with gentamicin Arc. Ophthalmol. 1987;105:831–837. DOI: 10.1001/archopht.1987.01060060117045

29. Daily M.J., Peyman G.A., Fishman G. Intravitreal injection of methicillin for treatment of endophthalmitis. Am. J. Ophthalmol. 1973;76:343–350.

30. Axelrod A.J., Peyman G.A, Apple D.J. Toxicity of intravitreal injection of amphotericin B. Am. J. Ophthalmol. 1973;76:578–583.

31. Barry P., Cordoves L., Gardner S. ESCRS Guidelines for Prevention and Treatment of Endopthalmitis Following Cataract Surgery. Co Dublin: Temple House, Temple Road, Blackrock. 2013;1–22.

32. No authors listed. Results of the Endophthalmitis Vitrectomy Study. Arch Ophthalmol. 1995; 113(12):1479–1496

33. Spellberg B., Gilbert D.N. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin. Infect. Dis. 2014;59(2):71–75. DOI: 10.1093/cid/ciu392

34. Sengupta S., Chattopadhyay M.K., Grossart H.P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol. 2013;4:47. DOI: 10.3389/fmicb.2013.00047

35. Hillier R.J., Arjmand P., Rebick G. Post-traumatic vancomycin-resistant enterococcal endophthalmitis. J. Ophthalmic Inflamm. Infect. 2013;3:42. DOI: 10.1186/18695760-3-42

36. Sharma S., Desai R.U., Pass A.B., et al. Vancomycin-Resistant Enterococcal Endophthalmitis. Arch. Ophthalmol. 2010;128(6):794–795. DOI: 10.1001/archophthalmol.2010.77

37. Nguyen J., Hartnett M.E. Successful management of post-traumatic vancomycinresistant enterococcus endophthalmitis. Am. J. Ophthalmol. Case Rep. 2017;5:117– 118. DOI: 10.1016/j.ajoc.2016.12.022

38. Kansal V., Rahimy E., Garg S. Endogenous methicillin-resistant Staphylococcus aureus endophthalmitis secondary to axillary phlegmon: a case report. Can. J. Ophthalmol. 2017;52(3):97–99. DOI: https://doi.org/10.1016/j.jcjo.2016.11.016

39. Relhan N., Pathengay A., Schwartz S.G., Flynn H.W. Jr. Emerging Worldwide Antimicrobial Resistance, Antibiotic Stewardship and Alternative Intravitreal Agents for the Treatment of Endophthalmitis. Retina. 2017;37(5):811–818. DOI: 10.1097/IAE.0000000000001603

40. Read A.F., Woods R.J. Antibiotic resistance management. Evol. Med. Public Health. 2014;14(1):147. DOI: 10.1093/emph/eou024

41. Bartlett J.G., Gilbert D.N., Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013;56(10):1445–1450. DOI: 10.1093/cid /cit070

42. No authors listed. The antibiotic alarm. Nature. 2013;495(7440):14. DOI: 10.1038/495141a.

43. Viswanathan V.K. Off-label abuse of antibiotics by bacteria. Gut. Microbes. 2014;5(1):3–4. DOI: 10.4161 /gmic.28027

44. Luyt C.E., Brechot N., Trouillet J.L., Chastre J. Antibiotic stewardship in the intensive care unit. Crit. Care. 2014;18(5):480. DOI: 10.1186/s13054-014-0480-6

45. Grzybowski A., Brona P., Kim S.J. Microbial flora and resistance in ophthalmology: a review. Graefes Arch. Clin. Exp. Ophthalmol. 2017;255(5):851–862. DOI: 10.1007/s00417-017-3608-y

46. Miller D. Update on the Epidemiology and Antibiotic Resistance of Ocular Infections. Middle East Afr. J. Ophthalmol. 2017;24(1):30–42. DOI: 10.4103/meajo.MEA JO_276_16

47. Michael C.A, Dominey-Howes D., Labbate M. The antibiotic resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145. DOI: 10.3389/fpubh.2014.00145

48. Piddock L.J. The crisis of no new antibiotics—what is the way forward? Lancet Infect Dis. 2012;12(3):249–253. DOI: 10.1016/S1473-3099(11)70316-4

49. Lushniak B.D. Antibiotic resistance: a public health crisis. Public Health Rep. 2014;129(4):314–316. DOI: 10.1177/003335491412900402.

50. Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271: 933–937. DOI: 10.1126/science.271.5251.933

51. Weller H. Quantum size colloids: From size-dependent properties of discrete particles to self-organized superstructures. Curr. Opin. Colloid Interface Sci. 1998;3:194– 199. DOI: 10.1016/S1359-0294(98)80013-7

52. Weng J., Song X., Li L. Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging. Talanta. 2006;70:397– 402. DOI: 10.1016/j.talanta.2006.02.064

53. Courtney C.M., Goodman S.M., Nagy T.A., Levy M., Bhusal P., Madinger N.E. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. Sci. Adv. 2017;3(10):1–10. DOI: 10.1126/sciadv.170177

54. Courtney C.M., Goodman S.M., McDaniel J.A., Madinger N.E., Chatterjee A., Nagpal P. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 2016;15:529–534. DOI: 10.1038/nmat4542

55. Vladimirov Yu.A. Free radicals in biological systems. Soros educational magazine = Sorosovskij obshheobrazovatel’nyj zhurnal. 2000;6(12):13–19 (In Russ.).

56. Cheeseman K.H., Slater T.F. An introduction to free radical biochemistry. Brit. Med. Bull. 1993;49:481–493. DOI: 10.1093/oxfordjournals.bmb.a072625

57. Cross A.R., Jones O.T.G. Enzymic mechanisms of superoxide production. Biochem. biophys. acta. 1991;1057:281–298. DOI: 10.1016/s0005-2728(05)80140-9.

58. Sandhu S.K., Kaur G. Mitochondrial Electron Transport Chain Complexes in Aging Rat Brain and Lymphocytes. Biogerontol. 2003;4(1):19–29. DOI: 10.1023/a:1022473219044.

59. Kinnula V.L., Soini Y., Kvist-Makela K., Savolainen E.R., Koistinen P. Antioxidant defense mechanisms in human neutrophils. Antioxid. Redox Signal. 2002;4(1):27– 34. DOI: 10.1089/152308602753625825.

60. Valko M., Leibfritz D., Moncol J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. DOI: 10.1016/j.biocel.2006.07.001

61. Imlay J.A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 2013;11:443–454. DOI: 10.1038/nrmicro3032

62. Goodman M., Levy M., Fei-Fei L. Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy. Front. Chem. 2018;46(6):1–12. DOI: 10.3389/fchem.2018.00046


Review

For citations:


Ponomarev V.O., Kazaykin V.N., Ponomarev O.P. Modern Problems of Antibiotic Therapy in Ophthalmology and the Perspective Ways of Solution. Literature Review. Ophthalmology in Russia. 2020;17(4):683-691. (In Russ.) https://doi.org/10.18008/1816-5095-2020-4-683-691

Views: 1231


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)