Improved Femtosecond Laser-Assisted Phacoemulsification of Hard Nucleus Cataract
https://doi.org/10.18008/1816-5095-2020-4-733-738
Abstract
Purpose: The development and clinical study of improved femtosecond laser-assisted phacoemulsification (PE) technology of hard nucleus cataract.
Patients and methods. Improved femtosecond laser-assisted PE of hard nucleus cataract performed in 83 patients (93 eyes) (1st group), known femtosecond laser-assisted PE technique performed in 72 patients (78 eyes) (2nd group), torsional PE performed in 81 patients (89 eyes) (3rd group). The degree of intraoperative myosis, effective ultrasound time, corneal endothelial cell loss were evaluated in all groups.
Results. Femtosecond laser-assisted PE is an effective technique for hard nucleus cataract removal, which can significantly reduce the energy ultrasonic load on the eye tissue. The proposed method for the instillation of prostaglandin synthesis inhibitors and the observance of the minimum possible interval between the first and second stages of the operation can prevent significant intraoperative narrowing of the pupil. A significant narrowing of the pupil by more than 2 mm after the femtolaser stage was noted in 7 (7.5 %) cases in the 1st group of patients, in 15 (16.9 %) cases in the 2nd group, in 5 (6.4 %) cases in the 3rd group. The results of the study has shown a significant decrease in the effective ultrasound time for a femtosecond laser-assisted PE compared with a torsional PE. The effective ultrasound time was in the 1st group (improved technology of femtosecond laser-assisted PE) — 3.81 ± 0.75, in the 2nd group (known technology of the femtosecond laser-assisted PE) — 5.23 ± 1.07 s (p < 0.05), in the 3rd group (OZil technology) — 8.67 ± 1.83 s (p < 0.05). The decrease in the effective ultrasound time has become a determining factor in reducing the loss of corneal endothelial cells in both femtosecond laser-assisted PE technologies compared to torsional PE. The average loss of corneal endothelial cells 3 months after surgery was 8.7 ± 1.8 % in the 1st group, 10.3 ± 2.1% in the 2nd group, 13.5 ± 2.7 % (p < 0.05) in the 3rd group of patients.
Conclusion. The proposed improved technology contributes to the solution of some problems that characterize femtosecond laser-assisted PE, and also helps to reduce the effective ultrasound time and the loss of corneal endothelial cells.
About the Authors
Yu. N. YousefRussian Federation
MD, acting director,
Rossolimo str., 11A, В, Moscow, 119021
G. V. Voronin
Russian Federation
MD, head of the modern treatment methods in ophthalmology department,
Rossolimo str., 11A, В, Moscow, 119021
S. N. Yousef
Russian Federation
PhD, senior researcher of the modern treatment methods in ophthalmology department,
Rossolimo str., 11A, В, Moscow, 119021
A. S. Vvedenskiy
Russian Federation
MD, senior researcher of the modern treatment methods in ophthalmology department,
Rossolimo str., 11A, В, Moscow, 119021
L. Alkharki
Russian Federation
researcher of the modern treatment methods in ophthalmology department,
Rossolimo str., 11A, В, Moscow, 119021
N. Y. Shkolyarenko
Russian Federation
PhD, senior researcher of the modern treatment methods in ophthalmology department,
Rossolimo str., 11A, В, Moscow, 119021
E. V. Reznikova
Russian Federation
PhD, researcher of the modern treatment methods in ophthalmology department,
Rossolimo str., 11A, В, Moscow, 119021
References
1. Nagy Z., Takacs A., Filkorn T., Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J. Refract. Surg. 2009;25(12):1053–1060. DOI: 10.3928/1081597X-20091117-04
2. Anisimova S.Yu., Anisimov S.I., Trubilin V.N., Novak I.V. Femtolaser-assisted phacoemulsification. The first domestic experience. Cataractal and Refractive Surgery = Kataraktal’naya i refraktsionnaya khirurgiya. 2012;12(3):7–10 (In Russ.).
3. Avetisov S., Mamikonyan V., Yusef Y., Yusef S., Ivanov M., Avetisov K. Hybrid phacoemulsification: a new stage in the improvement of cataract surgery. Annals of Ophthalmology = Vestnik oftal’mologii. 2014;130(2):4–7 (In Russ.).
4. Nagy Z., Takacs A., Filkorn T., Kránitz K., Gyenes A., Juhász É., Sándor G., Kovacs I., Juhász T., Slade S. Complications of femtosecond laser-assisted cataract surgery. J. Cataract Refract. Surg. 2014;40(1):20–28. DOI: 10.1016/j.jcrs.2013.08.046
5. Nagy Z., Kránitz K., Takacs A., Miháltz K., Kovács I., Knorz M. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J. Refract. Surg. 2011;27(8):564–569. DOI: 10.3928/1081597X-20110607-01
6. Anisimova S,Yu., Trubikin V.N., Trubilin A.V., Anisimov S.I. Compare mechanical and femtosecond capsulorhexis in phacoemulsification. Cataractal and Refractive Surgery = Kataraktal’naya i refraktsionnaya khirurgiya. 2012;12(4):16–18 (In Russ.).
7. Avetisov K.S., Ivanov M.N., Yusef Yu.N., Yusef S.N., Aslamazova A.E., Fokina N.D. Morphological and clinical aspects of anterior capsulotomy in femtosecond laser-assisted cataract surgery. Annals of Ophthalmology = Vestnik oftal’mologii. 2017;133(4):83–88 (In Russ.). DOI: 10.17116/ophthalma2017133483-88
8. Chen X., Yu Y., Song X., Zhu Y., Wang W., Yao K. Clinical outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery for hard nuclear cataract. J Cataract Refract Surg. 2017;43(4):486–491. DOI: 10.1016/j.jcrs.2017.01.010
9. Dick H.B., Schultz T. A Review of Laser-Assisted Versus Traditional Phacoemulsification Cataract Surgery. Ophthalmol Ther. 2017;6:7–18. DOI: 10.1007/s40123-0170080-z
10. Bascaran L., Alberdi T., Martinez-Soroa I., Sarasqueta C., Mendicute J. Differences in energy and corneal endothelium between femtosecond laser-assisted and conventional cataractsurgeries: prospective, intraindividual, randomized controlled trial. Int J Ophthalmol. 2018;11(8):1308–1316. DOI: 10.18240/ijo.2018.08.10
11. Jun J., Hwang K., Chang S., Joo C. Pupil-size alterations induced by photodisruption during femtosecond laser-assisted cataract surgery. J. Cataract Refract. Surg. 2015;41(2):278–285. DOI: 10.1016/j.jcrs.2014.10.027
12. Schultz T., Joachim S., Stellbogen M., Dick H. Prostaglandin release during femtosecond laser-assisted cataract surgery: main inducer. J. Refract. Surg. 2015;31(2):78– 81. DOI: 10.3928/1081597X-20150122-01
13. Mayer W.J., Klaproth O.K., Ostovic M., Hengerer F.H., Kohnen T. Femtosecond laser-assisted lens surgery depending on interface design and laser pulse energy: results of the first 200 cases. Ophthalmologe. 2014;111(12):1172–1177. DOI: 10.1007/s00347-014-3043-y
14. Toto L., Calienno R., Curcio C., Mattei P., Mastropasqua A., Lanzini M., Mastropasqua L. Induced inflammation and apoptosis in femtosecond laser-assisted capsulotomies and manual capsulorhexes: an immunohistochemical study. J. Refract. Surg. 2015;31(5):290–294. DOI: 10.3928/1081597X-20150423-01
15. Aly M.G., Shams A., Fouad Y.A., Hamza I. Effect of lens thickness and nuclear density on the amount of laser fragmentation energy delivered during femtosecond assisted cataract surgery. J Cataract Refract Surg. 2019;45(4):485–489. DOI: 10.1016/j.jcrs.2018.11.014
16. Masuda Y., Igarashi T., Oki K., Kobayashi M., Takahashi H., Nakano T. Free radical production by femtosecond laser lens irradiation in porcine eyes. J Cataract Refract Surg. 2019;45(8):1168–1171. DOI: 10.1016/j.jcrs.2019.02.035
Review
For citations:
Yousef Yu.N., Voronin G.V., Yousef S.N., Vvedenskiy A.S., Alkharki L., Shkolyarenko N.Y., Reznikova E.V. Improved Femtosecond Laser-Assisted Phacoemulsification of Hard Nucleus Cataract. Ophthalmology in Russia. 2020;17(4):733-738. (In Russ.) https://doi.org/10.18008/1816-5095-2020-4-733-738