Preview

Ophthalmology in Russia

Advanced search

Аntioxidant Status and Lipid Metabolism in Patients with Different Forms of Primary Open-Angle Glaucoma Progression

https://doi.org/10.18008/1816-5095-2020-4-761-770

Abstract

Purpose: to study the antioxidant system and lipid status of serum and evaluate the effect of Cytoflavin on these characteristics in patients with progressive and stable primary open angle glaucoma (POAG).

Patients and methods. 67 patients with advanced stage POAG were observed. The average age was 66.3 ± 1.5 years. According to the course of the glaucoma process all patients were randomized into 2 groups: the 1st group with the stable glaucoma (31 patients) and the 2nd group with rapidly progressive glaucoma (36 patients). The progression criteria of POAG were global ganglion cell loss volume (GLV) and perimetric index (mean deviation-MD). For assessment of the reactivity of the vascular endothelium, a test with reactive hyperemia was performed using ultrasound method. The assessment of oxidative stress (OS) including peroxides, malonyldialdehyde (MDA) and the total antioxidant capacity of serum (AOS) were evaluated. The investigations of lipid metabolism included the level of cholesterol total (CT), cholesterol of low-density lipoproteins cholesterol (LDL-C), high-density lipoproteins cholesterol (HDL-C), triglycerides (TG) and atherogenic index (AI).

Results. In the 2nd group there was the significant decrease of the mean GLV indices compared to those in the 1st group (7.16 ± 2.5 и 1.06 ± 0.2, respectively, р < 0.001). The mild degree of endothelial dysfunction (ED) predominantly was detected in patients of the 1st group (69 % of cases). The moderate and marked ED were found in patients with progressive POAG (68 and 25 %, respectively). The high level of OS in serum was determined in 43 % of patients of the 1st group and in 69 % of patients of the 2nd group (significant increase of peroxides and MDA). In patients with progressive POAG the mean indices of lipid metabolism (CT, LDL-C, HDL-C, TG, AI) were significantly higher than in healthy subjects (р < 0.001). Cytoflavin had a positive effect on the vascular endothelium function, normalization of lipid metabolism and decrease of OS in serum with increasing AOS in patients with progressive POAG.

Conclusion. The assessment of the indices of OS, AOS and lipid metabolism enable us to determine the risk of progression of POAG and evaluate of the effectiveness of treatment. 

About the Authors

T. N. Malishevskaya
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

MD, head of analytical department,

Sadovaya-Chernogriazskaya str., 14/19, Moscow, 105062



T. N. Kiseleva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

MD, Professor, head of the ultrasound department,

Sadovaya-Chernogriazskaya str., 14/19, Moscow, 105062



Yu. E. Filippova
Regional Ocular Health Clinic; West Siberian Institute of postgraduate medical education
Russian Federation

assistant of the ophthalmology department,

Kholodil’naya str., 118, bldg. 4, Tyumen, 1625048;

Prokopiya Artamonova str., 5/11, Tyumen, 625051



M. S. Zaitsev
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

research assistant,

Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062



A. S. Vlasova
Regional Ocular Health Clinic, Ministry of public health and Social Development of Russia; West Siberian Institute of postgraduate medical education
Russian Federation

assistant of the ophthalmology department,

Kholodil’naya str., 118, bldg. 4, Tyumen, 1625048;

Prokopiya Artamonova str., 5/11, Tyumen, 625051



I. V. Nemtsova
Regional Ocular Health Clinic, Ministry of public health and Social Development of Russia; West Siberian Institute of postgraduate medical education
Russian Federation

assistant of the ophthalmology department,

Kholodil’naya str., 118, bldg. 4, Tyumen, 1625048;

Prokopiya Artamonova str., 5/11, Tyumen, 625051



K. V. Lugovkina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

PhD, research officer,

Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062



References

1. Tham Y.C., Li X., Wong T.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. DOI: 10.1016/j.ophtha.2014.05.013

2. Fujino Y., Asaoka R., Murata H. Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG). Invest Ophthalmol Vis. Sci. 2016;57(4):2012–2020. DOI: 10.1167/iovs.15-19046

3. Liu B., McNally S., Kilpatrick J.I. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol. 2018;63(1):56–74. DOI: 10.1016/j.survophthal.2017.06.007

4. Springelkamp H., Iglesias A.I., Mishra A. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol. Gen. 2017;26(2):438–453. DOI: 10.1093/hmg/ddw399

5. Chitranshi N., Dheer Y., Abbasi M. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol. 2018;16(7):1018–1035. DOI: 10.2174/1570159X16666180419121247.

6. Gubin D.G., Malishevskaya T.N., Astakhov Y.S., Astakhov S.Y., Kuznetsov V.A., Cornelissen, G., Weinert D. Progressive retinal cell loss in primary open-angle glaucoma is associated with temperature circadian rhythm phase delay and compromised sleep. Chronobiology International. 2019;36(4):564–577. DOI: 10.1080/07420528.2019.1566741

7. Malishevskaya T.N., Gubin D.G., Nemtsova I.V., Vlasova A.S., Filippova Yu.E., Farikova E.E., Bogdanova D.S. Analysis of the circadian rhythm of intraocular pressure with stable and progressive forms of primary open-angle glaucoma. Russian ophthalmological journal = Rossiyskiy oftal’mologicheskiy zhurnal. 2019;12(4):35– 42 (In Russ.). DOI: 10.21516/2072-0076-2019-12-4-35-42

8. Astakhov Y., Rukhovets A., Akopov E. Ocular Blood Flow And Systemic Blood Pressure Correlations In Young And Elderly Subjects. 6th World Glaucoma Congress. 2015;4:157.

9. Volkov V.V. Open-angle glaucoma. Moscow: Meditsinskoe informatsionnoe agentstvo; 2008:352 (In Russ.).

10. Konieczka K., Cackathayil T.N., Fränkl S. Primary vascular dysregulation and glaucoma. Russian Journal of glaucoma. 2015;14(1):20–26.

11. Salles G.F., Reboldi G., Fagard R.H. Prognostic Effect of the Nocturnal Blood Pressure Fall in Hypertensive Patients: The Ambulatory Blood Pressure Collaboration in Patients With Hypertension (ABC-H) Meta-Analysis. Hypertension. 2016;67(4):693–700. DOI: 10.1161/HYPERTENSIONAHA.115.06981

12. Malishevskaya T.N., Astakhov S.Yu. Reactivity of vascular endothelium in elderly patients with primary open-angle glaucoma and physiologically aging people, depending on the severity of endothelial dysfunction. Regional blood circulation and microcirculation = Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya. 2016;15(4):59–68 (In Russ.). DOI: 10.24884/1682-6655-2016-15-4-59-67

13. Malishevskaya T.N., Dolgova I.G. Endothelial dysfunction and oxidative stress in patients with primary open-angle glaucoma: correction possibilities. Annals of Ophthalmology = Vestnik oftal’mologii. 2014;2(5):1–6 (In Russ.).

14. Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog. Retin. Eye Res. 2006;25:490–513. DOI: 10.1016/j.preteyeres.2006.07.003

15. Gregory M.S., Hackett C.G., Abernathy E.F., Lee K.S. Opposing roles for membrane bound and soluble Fas ligand in glaucoma associated retinal ganglion cell death. PLoS One. 2011;29;6(3):17659. DOI: 10.1371/journal.pone.0017659

16. Oganov R.G. Dyslipidemia and atherosclerosis. Biomarkers, diagnosis and treatment. Guide for doctors. Moscow: GEOTAR-Media; 2009:10–150 (In Russ.).

17. Sumin A.N., Bezdenezhnykh N.A., Fedorova N.V., Shcheglova A.V., Indukaeva E.V., Artamonova G.V. [Values of the cardio-ankle vascular and ankle-brachial indices in patients with impaired carbohydrate metabolism (EssayRF study in the Kemerovo region). Therapeutic Archive = Terapevticheskii arkhiv. 2016;88(12):11–20 (In Russ.). DOI: 10.17116/terarkh2016881211-20

18. Chitranshi N., Dheer Y., Abbasi M. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol. 2018;16(7):1018–1035. DOI: 10.2174/1570159X16666180419121247

19. Gusev A.N., Krasnogorskaya V.N., Sorokina E.V., Guseva E.V. The results of the treatment of glaucomatous optic neuropathy using drugs cytoflavin and combined. Modern technologies in ophthalmology = Sovremennye tekhnologii v oftal’mologii. 2015;2:154–155 (In Russ.)

20. McMonnies C. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. Journal of Optometry. 2018;11(1):3–9. DOI: 10.1016/j.optom.2017.06.002

21. Fedin A.I. Oxidant stress and the use of antioxidants in neurology. Nervous diseases = Nervnye bolezni. 2002;1:15–18 (In Russ.).

22. Malaya L.T., Korzh A.N., Balkovskaya L.B. Endothelial dysfunction in the pathology of the cardiovascular system. Khar’kov: Torsing; 2000:432 (In Russ.)

23. Kurysheva N.I., Tsaregorodtseva M.A. The role of endothelial dysfunction in the pathogenesis of glaucoma. Glaucoma = Glaukoma. 2011;(1):58–63 (In Russ.)

24. Astakhov Yu.S., Akopov E.L., Rukhovets A.G. Is biometrics necessary for ophthalmoplethysmography? Point of view. East — West = Tochka zreniya. Vostok — Zapad. 2014;(1):95–97 (In Russ.).

25. Toda N., Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Progress in Retinal and Eye Research. 2007;26(3):205–238. DOI: 10.1016/j.preteyeres.2007.01.00410.1002/jcb.1198

26. Neroev V.V., Kiseleva T.N., Zaitsev M.S. [Molecular mechanisms of optic nerve damage: the role of anticyanosines in the prevention of ganglion cell death]. Russian Ophthalmological Journal = Rossiiskii oftal’mologicheskii zhurnal. 2018;11(3):101– 106 (In Russ.)

27. Markevich P.S., Danilenko S.Yu., Yankin A.V., Plekhanov A.N. Points of application of cytoflavin on intracellular biochemical process (the revew of literature). Bulletin of the East Siberian Scientific Center SBRAMS = Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiiskoi Akademii meditsinskikh nauk. 2011;1(77):232–236 (In Russ.).


Review

For citations:


Malishevskaya T.N., Kiseleva T.N., Filippova Yu.E., Zaitsev M.S., Vlasova A.S., Nemtsova I.V., Lugovkina K.V. Аntioxidant Status and Lipid Metabolism in Patients with Different Forms of Primary Open-Angle Glaucoma Progression. Ophthalmology in Russia. 2020;17(4):761-770. (In Russ.) https://doi.org/10.18008/1816-5095-2020-4-761-770

Views: 1016


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)