Preview

Ophthalmology in Russia

Advanced search

Calcium-Phosphate Nanoparticles — a System for Drug Delivery to the Anterior Eye Chamber

https://doi.org/10.18008/1816-5095-2021-2-331-337

Abstract

Purpose: to prepare and characterize calcium-phosphate nanoparticles loaded with compounds of different nature: low-molecular inhibitor of angiotensin-converting enzyme lisinopril, and high-molecular enzyme superoxide dismutase 1. To estimate the possibility of enhancing the biological efficacy of these compounds via incorporation to the nanoparticles.

Material and methods. To increase the stability of calcium-phosphate nanoparticles coating with β-D-cellobiose was used. The size, surface charge (ζ-potential) of the particles and efficacy of including of the selected compounds to the particles were measured. Comparative assessment of the efficacy of lisinopril solution and lisinopril in nanoparticles was made via the estimation of their ocular hypotensive effect in normotensive rabbits. To compare the efficacy of the superoxide dismutase 1 solution and superoxide dismutase 1 in nanoparticles the rabbit model of immunogenic uveitis was used. We estimated the clinical score for several signs of uveitis, protein level, and antioxidant activity in aqueous humor.

Results. Calcium-phosphate nanoparticles containing lisinopril had average hydrodynamic radius of 170–300 nm and negative ζ-potential of –17 mV. Particles containing superoxide dismutase 1 had average hydrodynamic radius of 220–450 nm and negative ζ-potential of –4 mV. Lisinopril in nanoparticles caused a significantly greater decrease of intraocular pressure than lisinopril solution. Superoxide dismutase 1 in calcium-phosphate nanoparticles more efficiently decreased the clinical manifestations of uveitis and normalized the biochemical processes in aqueous humor than the enzyme in buffer solution.

Conclusion. Incorporation of both low-molecular and high-molecular drugs to the calcium-phosphate nanoparticles enhance their bioavailability and therapeutic efficiency. The data obtained give evidence of the prospectively of the using of these nanoparticles as vehicles for the ophthalmic drugs used in eyedrops. 

About the Authors

O. V. Beznos
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

research officer,

Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062



V. E. Tikhomirova
Lomonosov Moscow State University
Russian Federation

research officer,

Leninskie Gory, 1, Moscow, 119991



E. V. Popova
Lomonosov Moscow State University
Russian Federation

postgraduate,

Leninskie Gory, 1, Moscow, 119991



T. A. Pavlenko
Lomonosov Moscow State University
Russian Federation

PhD, senior research officer,

Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062



O. A. Kost
Lomonosov Moscow State University
Russian Federation

PhD, leading research officer,

Leninskie Gory, 1, Moscow, 119991



N. B. Chesnokova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Dr. of Biol. Sci., Professor, head of the Department of patophysiology and biochemistry of the eye,

Sadovaya-Chernogryazskaya str., 14/19, Moscow, 105062



References

1. Urtti A. Systemic absorption of ocular pilocarpine is modified by polymer matrices. Int. J. Pharm. 1985;23:147–161.

2. Lee V.H.L., Robinson J.R. Review: Topical ocular drug delivery: Recent developments and future challenges. J. Ocul. Pharmacol. 1986;2:67–108. DOI: 10.1089/jop.1986.2.67

3. Prausdnitz M.R., Noonan J.S. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci. 1998;87(12):1479– 1488. DOI: 10.1021/js9802594

4. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev. 2006;58:1131–1135. DOI: 10.1016/j.addr.2006.07.027

5. Subrizi A., Del Amo E.M., Korzhikov-Vlakh V., Tennikova T., Ruponen M., Urtti A. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov. Today. 2019;24(8):1446–1457. DOI: 10.1016/j.drudis.2019.02.001

6. Klyce S.D., Crosson C.E. Transport processes across the rabbit corneal epithelium: a review. Curr. Eye Res. 1985;4:323–331. DOI: 10.3109/02713688509025145

7. Ahmed I., Patton T.F. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest. Ophthal. Vis. Sci. 1985;26:584–587.

8. Ako-Adounvo A-M., Nagarwal R.C., Oliveira L., Boddu S.H., Wang X.S., Dey S., Karla P.K. Recent Patents on Ophthalmic Nanoformulations and Therapeutic Implications. Recent Pat. Drug Deliv. Formul. 2014;8(3):193–201. DOI: 10.2174/1872211308666140926112000

9. Janagam D.R., Wu L., Lowe T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev. 2017;122:31–64. DOI: 10.1016/j.addr.2017.04.001

10. Zhao R., Ren X., Xie C., Kong X. Towards understanding the distribution and tumor targeting of sericin regulated spherical calcium phosphate nanoparticles. Microsc. Res. Tech. 2017;80(3):321–330. DOI: 10.1002/jemt.22800

11. Chu E., Chu T.C., Potter D.E. Mechanisms and sites of ocular action of 7-hydroxy2-dipropylaminotetralin: A dopamine (3) receptor agonist. J. Pharmacol. Exp. Ther. 2000;293(3):710–716.

12. Chen R., Qian Y., Li R., Zhang Q., Liu D., Wang M., Xu Q. Methazolamide calcium phosphate nanoparticles in a ocular delivery system. Yakugaku Zasshi. 2010;130(3):419–424. DOI: 10.1248/yakushi.130.419

13. Hu J., Kovtun A., Tomaszewski A., Singer B.B., Seitz B., Epple M., Steuhl K.P., Ergün S., Fuchsluger T.A. A new tool for the transfection of corneal endothelial cells: Calcium phosphate nanoparticles. Acta Biomater. 2012;8:1156–1163. DOI: 10.1016/j.actbio.2011.09.013

14. Edelhauser H.F., Rowe-Rendleman C., Robinson M.R., Dawson D.G., Chader G.J., Grossniklaus H.E., Rittenhouse K.D., Wilson C.G., Weber D.A., Kuppermann B.D., Csaky K.G., Olsen T.W., Kompella U.B., Holers V.M., Hageman G.S., Gilger B.C., Campochiaro P.A., Whitcup S.M., Wong W.T. Ophthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications. Invest. Ophthalmol. Vis. Sci. 2010; 51(11):5403–5420. DOI: 10.1167/iovs.10-5392

15. Oh N., Park J-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 2014;9(Suppl 1):51–63. DOI: 10.2147/IJN.S26592

16. Sokolova V., Kozlova D., Knuschke T., Buer J., Westendorf A.M., Epple M. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells. Acta Biomater. 2013;9:7527–7535. DOI: 10.1016/j.actbio.2013.02.034

17. Olton D.Y., Close J.M., Sfeir C.S., Kumta P.N. Intracellular trafficking pathways involved in the gene transfer of nano-structured calcium phosphate-DNA particles. Biomaterials. 2011;32(30):7662–7670. DOI: 10.1016/j.biomaterials.2011.01.043

18. Bell S., He Q., Chu T., Potter D. Intraocular Delivery Compositions and Methods Cross-Reference to Related Application. US Patent № WO 2004050065 (A1), prior. 2004-06-17.

19. Shimanovskaia E.V., Beznos O.V., Kliachko N.L., Kost O.A., Nikol’skaia I.I., Pavlenko T.A., Chesnokova N.B., Kabanov A.V. Production of timolol containing calciumphosphate nanoparticles and evaluation of their effect on intraocular pressure in experiment. Annales of Ophthalmology = Vestnik Oftalmologii 2012;128(3):15–18 (In Russ.).

20. Svedas V., Galaev I., Borisov I., Berezin I. The interaction of amino acids with o-phtalaldehyde: a kinetic study and spectrophotometric assay of the reaction product. Anal. Biochem. 1980;101:188–195.

21. Kostiuk V.А., Potapovich A.I., Kovalyova J.V. A simple and sensitive method of superoxide dismutase activity based on quercetine oxidation. Medical chemistry affairs = Voprosy medicinskoy khimi. 1990;2:88–91 (In Russ.).

22. Neroev V.V., Davydova G.A., Perova T.S. Model of experimental uveitis in rabbits Bull Exper Biol Med. 2006;142(11):598–600. DOI: 10.1007/s10517-006-0440-5

23. Lowry O., Rozebrough N., Farr A., Randell R. Protein mеasurement with the folin phenol reagent. J Biol. Chem. 1951;193:265–275.

24. Gulidova O.V., Lubitsky O.B., Klebanov G.I., Chesnokova N.B. Antioxidant activity in tear fluid in experimental alkali eye burns. Bull Exper Biol Med. 1999;128(11):571– 574.. DOI: 10.1007/bf02433426

25. Chesnokova N.B., Neroev V.V., Beznos O.V., Beĭshenova G.A., Nikol’skaia I.I., Kost O.A., Binevskiĭ P.V., Shekhter A.B. Oxidative stress in uveitis and its correction with superoxide dismutase antioxidative enzyme (experimental study). Annales of Ophthalmology = Vestnik Oftalmologii.2014;130(5):30–34 (In Russ.).


Review

For citations:


Beznos O.V., Tikhomirova V.E., Popova E.V., Pavlenko T.A., Kost O.A., Chesnokova N.B. Calcium-Phosphate Nanoparticles — a System for Drug Delivery to the Anterior Eye Chamber. Ophthalmology in Russia. 2021;18(2):331-337. (In Russ.) https://doi.org/10.18008/1816-5095-2021-2-331-337

Views: 929


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)