Preview

Офтальмология

Расширенный поиск

Место транссклеральных технологий в лазерном лечении глаукомы: история, этапы развития, перспективы

https://doi.org/10.18008/1816-5095-2021-3S-695-702

Аннотация

Наличие баланса между продукцией и оттоком внутриглазной жидкости обеспечивает стабильность уровня внутриглазного давления (ВГД). Снизить ВГД означает повлиять на одну из этих переменных. В течение многих десятилетий транссклеральные лазерные вмешательства при лечении глаукомы рассматривались исключительно в качестве операций с циклодеструктивным действием, влияющих только на снижение выработки внутриглазной жидкости (ВГЖ). В последнее время появились новые транссклеральные лазерные технологии, влияющие на увеосклеральный отток. Это стало возможным благодаря появлению новых лазеров и новых режимов работы, предусматривающих проведение лазерного транссклерального вмешательства в проекции плоской части цилиарного тела (например, транссклеральная циклофотокоагуляция (ЦФК) в микроимпульсном режиме при λ = 810 мкм и ЦФК с применением импульсно-периодического излучения лазера при λ = 1,56 мкм). Помимо хорошего гипотензивного эффекта, данные технологии обладают более щадящим характером, что, соответственно, уменьшает количество побочных и нежелательных эффектов. Это объясняет все бóльший сдвиг в сторону использования транссклеральных технологий на более ранних стадиях глаукомы, а не только при терминальной глаукоме с болевым синдромом в качестве так называемой «хирургии отчаяния».

Об авторах

Юсеф Наим Юсеф
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия

Юсеф Наим Юсеф, доктор медицинских наук, директор, руководитель отдела современных методов лечения в офтальмологии

ул. Россолимо, 11а, б, Москва, 119021



А. А. Гамидов
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия

Гамидов Алибек Абдулмуталимович, доктор медицинских наук, старший научный сотрудник отдела современных методов лечения в офтальмологии 

ул. Россолимо, 11а, б, Москва, 119021



М. А. Карпилова
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия

Карпилова Мария Александровна, кандидат медицинских наук, научный сотрудник отдела глаукомы

ул. Россолимо, 11а, б, Москва, 119021



П. Д. Гаврилина
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия

Гаврилина Полина Дмитриевна, аспирант

ул. Россолимо, 11а, б, Москва, 119021



Список литературы

1. Verhoeff F. Cyclectomy: a new operation for glaucoma. Arch Ophthalmol. 1924;53:228–229.

2. Covell L., Batungbacal R. Cyclodiathermy in glaucoma. American Journal of Ophthalmology. 1955;40(1):77–82. DOI: 10.1016/0002-9394(55)92124-3

3. Vogt A. Cyclodiathermypuncture in cases of glaucoma. British Journal of Ophthalmology. 1940;24(6):288–297. DOI: 10.1136/bjo.24.6.288

4. Bietti G. Surgical intervention on the ciliary body. Journal оf The American Medical Association. 1950;142(12):889–897. DOI: 10.1001/jama.1950.02910300027006

5. Quigley H. Histological and physiological studies of cyclocryotherapy in primate and human eyes. American Journal of Ophthalmology. 1976;82(5):722–732. DOI: 10.1016/0002-9394(76)90009-x

6. Benson M., Nelson M. Cyclocryotherapy: a review of cases over a 10-year period. British Journal of Ophthalmology. 1990;74(2):103–105. DOI: 10.1136/bjo.74.2.103

7. Caprioli J., Sears M. Regulation of intraocular pressure during cyclocryotherapy for advanced glaucoma. American Journal of Ophthalmology. 1986;101(5):542–545. DOI: 10.1016/0002-9394(86)90943-8

8. Silverman R.H., Vogelsang B., Rondeau M.J., Coleman D.J. Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol. 1991;111(3):327–337. DOI: 10.1016/s0002-9394(14)72318-9

9. Cato S. Ultrasound circular cyclo-coagulation — innovation in glaucoma with high intensive focused ultrasound. Eur Ophthalmic Rev. 2011;5(2):1–76. DOI: 10.17925/eor.2011.05.02.109

10. Aptel F., Charrel T., Lafon C. Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study. Invest Ophthalmol Vis Sci. 2011;52(12):8747–8753. DOI: 10.1167/iovs.11-8137

11. Aptel F., Dupuy C., Rouland J.F. Treatment of refractory open-angle glaucoma using ultrasonic circular cyclocoagulation: a prospective case series. Curr Med Res Opin. 2014;30:1599–1605. DOI: 10.1185/03007995.2014.910509

12. Denis P., Aptel F., Rouland J.F. Cyclocoagulation of the ciliary bodies by high-intensity focused ultrasound: a 12-month multicenter study. Invest Ophthalmol Vis Sci 2015;56:1089–1096. DOI: 10.1167/iovs.14-14973

13. Aptel F., Begle A., Razavi A. Short- and long-term effects on the ciliary body and the aqueous outflow pathways of high-intensity focused ultrasound cyclocoagulation. Ultrasound Med Biol. 2014;40:2096–2106. DOI: 10.1016/j.ultrasmedbio.2014.04.017

14. Mastropasqua R., Agnifili L., Fasanella V., Toto L., Brescia L., Di Staso S., Doronzo E., Marchini G. Uveo-scleral outflow pathways after ultrasonic cyclocoagulation in refractory glaucoma: an anterior segment optical coherence tomography and in vivo confocal study. British Journal of Ophthalmology. 2016;100:1668–1675. DOI: 10.1136/bjophthalmol-2015-308069

15. Smith R.S., Stein M.N. Ocular Hazards of Transscleral Lasr Radiation. Am J Ophthalmol. 1969;67:100‑110. DOI: 10.1016/0002-9394(69)90014-2

16. Smith R.S., Stein M.N. Ocular hazards of transscleral laser radiation:I. Spectral reflection and transmission of the sclera, choroid and retina. Am J Ophthalmol. 1968;66:21‑31. DOI: 10.1016/0002-9394(68)91781-9

17. Beckman H., Kinoshita A., Rota A., Sugar H. Transscleral ruby laser irradiation of the ciliary body in the treatment of intractable glaucoma. Transactions American Academy of Ophthalmology and Otolaryngology. 1972;76:423–436.

18. Beckman H., Sugar H.S. Neodymium laser cyclocoagulation. Archives Of Ophthalmology. 1973;90:27–28. DOI: 10.1001/archopht.1973.01000050029006

19. Kammer J. Ciliary Body as a Therapeutic Target. Surgical Innovations in Glaucoma. 2013;1:45–59. DOI: 10.1007/978-1-4614-8348-9_4

20. Shields M.B., Shields S.E. Noncontact transscleral Nd: YAG cyclophotocoagulation: A long‑term follow‑up of 500 patients. Transactions of the American Ophthalmological Society. 1994;92:271‑287.

21. Devenyi R., Trope G., Hunter W., Badeeb O. Neodymium-YAG transscleral cyclophotocoagulation in human eyes. Ophthalmology. 1987;94:1519–1522. DOI: 10.1016/s0161-6420(87)33252-x

22. Maus M., Katz L. Choroidal detachment, flat anterior chamber, and hypotony as complications of neodymium:YAG laser cyclophotocoagulation. Ophthalmology. 1990;97:69–72. DOI: 10.1016/s0161-6420(90)32640-4

23. Pratesi R. Diode lasers in photomedicine. IEEE J. Quantum Electron. 1984;20:1433– 1439. DOI: 10.1109/jqe.1984.1072352

24. Hennis H.L., Assia E., Stewart W.C., Legler U.F.C., Apple D.J. Transscleral cyclophotocoagulation using a semiconductor diode laser in cadaver eyes. Ophthalmic Surg. r Su1. 1991;21:274.

25. Hennis H.L., Stewart WC. Semiconductor diode laser transscleral cyclophotocoagulation in patients with glaucoma. Am J Ophthalmol. 1992;113:81–85. DOI: 10.1016/s0002-9394(14)75758-7

26. Gaasterland D.E., Pollack I.P. Initial experience with a new method of laser transscleral cyclophotocoagulation for ciliary ablation in severe glaucoma. Trans Am Ophthalmol Soc. 1992;90:225–243. DOI: 10.1016/s0161-6420(96)30508-3

27. Schuman J.S., Jacobson J.J., Noecker R.J., Reidy W.T. Experimental Use Of Semiconductor Diode Laser In Contact Transscleral Cyclophotocoagulation In Rabbits. Arch Ophthalmol. 1990;108:1152–1157. DOI: 10.1001/archopht.1990.01070100108044

28. Gupta N., Weinreb R.N. Diode Laser Transscleral Cyclophotocoagulation. J Glaucoma. 1997;6:426–429. DOI: 10.1097/00061198-199712000-00013

29. Youn J., Cox T.A., Herndon L.W., Allingham R.R., Shields M.B. A Clinical Comparison Of Transscleral Cyclophotocoagulation With Neodymium:Yag And Semiconductor Diode Lasers. Am J Ophthalmol. 1998;126:640–647. DOI: 10.1016/s00029394(98)00228-1

30. Chen T.C., Pasquale L.R., Walton D.S., Grosskreutz C.L. Diode Laser Transscleral Cyclophotocoagulation. Int Ophthalmol Clin. 1999;39(1):169–176. DOI: 10.1097/00004397-199903910-00015

31. Stinson W.G., Sherwood M.B. Cyclodestructive Procedures For Advanced Glaucoma: An Update. In: Jay B., Kirkness C.M., editors. Recent advances in ophthalmology. 1995;1:91–103.

32. Mastrobattista J.M., Luntz M. Ciliary Body Ablation: Where Are We And How Did We Get Here? Surv Ophthalmol. 1996;41(3):193–213. DOI: 10.1016/s00396257(96)80023-3

33. Delgado M.F., Dickens C.J., Iwach A.G., Novack G.D., Nychka D.S., Wong P.C., Nguyen N. Long-Term Results Of Noncontact Neodymium:Yttrium-Aluminum-Garnet Cyclophotocoagulation In Neovascular Glaucoma. Ophthalmology. 2003;110(5):895–899. DOI: 10.1016/s0161-6420(03)00103-9

34. Hawkins T.A., Stewart W.C. One Year Results Of Semiconductor Transscleral Cyclophotocoagulation In Patients With Glaucoma. Arch Ophthalmol. 1993;111:488–491. DOI: 10.1001/archopht.1993.01090040080035

35. Kosoko O., Gaasterland D.E., Pollack I.P., Enger C.L. Long Term Outcome Of Initial Ciliary Ablation With Contact Diode Laser Transscleral Cyclophotocoagulation For Severe Glaucoma. The Diode Laser Ciliary Ablation Study Group. Ophthalmology. 1996;103(8): 1294–1302. DOI: 10.1016/s0161-6420(96)30508-3

36. Hampton C., Shields M.B., Miller K.N., Blasin M. Evaluation Of A Protocol For Transscleral Neodymium:Yag Cyclophotocoagulation In One Hundred Consecutive Patients. Ophthalmology. 1990;97:910–917. DOI: 10.1016/s0161-6420(90)32482-x

37. Yildirim N., Yalvac I.S., Sahin A., Ozer A., Bozca T. A Comparative Study Between Diode Laser Cyclophotocoagulation And The Ahmed Glaucoma Valve Implant In Neovascular Glaucoma — A Long Term Follow-Up. J Glaucoma. 2009;18(3):192–196. DOI: 10.1097/ijg.0b013e31817d235c

38. Wilensky J.T., Kammer J. Long-Term Visual Outcome of Transscleral Laser Cyclotherapy In Eyes With Ambulatory Vision. Ophthalmology. 2004;111(7):1389–1392. DOI: 10.1016/j.ophtha.2003.11.008

39. Kramp K., Vick H.P., Guthoff R. Transscleral Diode Laser Contact Cyclophotocoagulation In The Treatment оf Different Glaucomas, Also As Primary Surgery. Graefes Arch Clin Exp Ophthalmol. 2002;240:698–703. DOI: 10.1007/s00417-002-0508-5

40. Ghosh S., Manvikar S., Ray-Chaudhuri N., Birch M. Efficacy Of Transscleral Diode Laser Cyclophotocoagulation In Patients With Good Visual Acuity. European Journal of Ophthalmology.2014;24(3):375–381. DOI: 10.5301/ejo.5000389

41. Rotchford A.P., Jayasawal R., Madhusudhan S., Ho S., King A.J., Vernon S.A. Transscleral Diode Laser Cycloablation In Patients With Good Vision. British Journal of Ophthalmology. 2010 Sep;94(9):1180–1183. DOI: 10.1136/bjo.2008.145565

42. Agarwal P., Dulku S., Nolan W., Song V. The UK National Cyclodiode Laser Survey. Eye. 2011;25(2):166–173. DOI: 10.1038/eye.2010.174

43. Iliev M.E., Gerber S. Long-term outcome of trans-scleral diode laser cyclophotocoagulation in refractory glaucoma. Br. J. Ophthalmol. 2007;91:1631–1635. DOI: 10.1136/bjo.2007.116533

44. Heinz C., Koch J.M., Heiligenhaus A. Transscleral diode laser cyclophotocoagulation as primary surgical treatment for secondary glaucoma in juvenile idiopathic arthritis: high failure rate after short term follow up. Br. J. Ophthalmol. 2006;90:737–740. DOI: 10.1136/bjo.2005.085936

45. Бойко Э.В., Куликов А.Н., Скворцов В.Ю. Оценка эффективности и безопасности применения диод-лазерной транссклеральной термотерапии цилиарного тела как способа лечения рефрактерной глаукомы. Вестник офтальмологии. 2014;5:64–67.

46. Куликов А.Н., Скворцов В.Ю. Изучение особенностей различных режимов диод-лазерной транссклеральной контактной циклокоагуляции в эксперименте. Профилактическая и клиническая медицина. 2011;3:482–484.

47. Uram M. Ophthalmic laser microendoscope ciliary process ablation in the management of neovascular glaucoma. Ophthalmology. 1992;99(12):1823–1828. DOI: 10.1016/s0161-6420(92)31718-x

48. Pantcheva M.B., Kahook M.Y., Schuman J.S., Noecker R.J. Comparison of acute structural and histopathological changes in human autopsy eyes after endoscopic cyclophotocoagulation and trans‑scleral cyclophotocoagulation. British Journal of Ophthalmology. 2007;91(2):248–252. DOI: 10.1136/bjo.2006.103580

49. Ishida K. Update on results and complications of cyclophotocoagulation. Current Opinion in Ophthalmology. 2013;24(2):102–110. DOI: 10.1097/icu.0b013e32835d9335

50. Kumar H., Mansoori T., Warjri G.B., Somarajan B.I., Bandil S., Gupta V. Lasers in glaucoma. Indian Journal of Ophthalmology. 2018;66(11):1539–1553. DOI: 10.4103/ijo.ijo_555_18

51. Uram M. Combined phacoemulsification, endoscopic ciliary process photocoagulation, and intraocular lens implantation in glaucoma management. Ophthalmic Surg. 1995;26(4):346–352.

52. Gayton J.L., Van Der Karr M., Sanders V. Combined cataract and glaucoma surgery: trabeculectomy versus endoscopic laser cycloablation. Journal of Cataract & Refractive Surgery. 1999;25(9):1214–1219. DOI: 10.1016/s0886-3350(99)00141-8

53. Lindfield D., Ritchie R.W., Griffiths M.F. “Phaco-ECP”: combined endoscopic cyclophotocoagulation and cataract surgery to augment medical control of glaucoma. BMJ Open. 2012;2(3):e000578. DOI: 10.1136/bmjopen-2011-000578

54. Agrawal P., Martin K. Ciliary body position variability in glaucoma patients assessed by scleral transillumination. Eye. 2008;22:1499–1503. DOI: 10.1038/eye.2008.79

55. Liu G.J., Mizukawa A., Okisada S. Mechanism of intraocular pressure decrease after contact transscleral continuous-wave Nd:YAG laser cyclophotocoagulation. Ophthalmic Research. 1994;26(2):65–79. DOI: 10.1159/000267395

56. Fea A.M., Dorin G. Laser treatment of glaucoma: evolution of laser trabeculoplasty techniques. Techniques in Ophthalmology. 2008;6(2):45–52. DOI: 10.1097/ito.0b013e31817dcba2

57. Kammer J.A. Laser trabeculoplasty: treatment with a diode laser appears to lower IOP while minimizing complications. Glaucoma Today. 2012;10(2):18–28.

58. Lin S., Babic K., Masis M. Micropulsetransscleral diode laser cyclophotocoagulation: short term results and anatomical defects. American Glaucoma Society. 2016. Poster Presentation.

59. Zhao M., Pekmezci M., Lee R.K., Han Y. Histologic Changes Following Continuous Wave And Micropulse Transscleral Cyclophotocoagulation: A Randomized Comparative Study. American Glaucoma Society. San Francisco; 2019.

60. Johnstone M.A., Song S., Padilla S., Wen K., Xin C., Wen J.C., Martin E., Wang R.K. Microscope Real-time Video, High-resolution OCT & Histopathology to Assess How Transcleral Micropulse Laser Affects the Sclera, Ciliary Body, Muscle, Secretory Epithelium, Suprachoroidal Space & Aqueous Outflow System. The Association for Research in Vision and Ophthalmology. Vancouver. Investigative Ophthalmology & Visual Science July 2019;60:2825.

61. Aquino M.C., Barton K., Tan A.M.W., Sng C., Li X., Loon S.C., Chew P.T. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma. Clinical and Experimental Ophthalmology. 2015;43(1):40–46. DOI: 10.1111/ceo.12360

62. Tan A.M., Chockalingam M., Aquino M.C., Lim Z.I.-L., See J.L.-S., Chew P.T.K. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clinical and Experimental Ophthalmology. 2010;38:266–272. DOI: 10.1111/j.1442-9071.2010.02238.x

63. Souissi S., Baudouin C., Labbe A., Hamard P. Micropulse transscleral cyclophotocoagulation using a standard protocol in patients with refractory glaucoma naive of cyclodestruction. European Journal of Ophthalmology. 2019:1120672119877586. DOI: 10.1177/1120672119877586

64. Ходжаев Н.С., Сидорова А.В., Елисеева М.А. Микроимпульсная циклофотокоагуляция в комбинированном лечении неоваскулярной глаукомы. Новости глаукомы. 2020;1(53):71–75.

65. Елисеева М.А., Ходжаев Н.С., Сидорова А.В., Старостина А.В. Микроимпульсная транссклеральная циклофотокоагуляция в комбинированном хирургическом лечении рефрактерной глаукомы: предварительные результаты. Современные технологии в офтальмологии. 2019;4:95–98. DOI: 10.25276/2312-49112019-4-95-98

66. Subramaniam K., Price M.O., Feng M.T., Price F.W. Micropulse Transscleral Cyclophotocoagulation in Keratoplasty Eyes. Cornea. 2019;38(5):542–545. DOI: 10.1097/ico.0000000000001897

67. Al Habash A., AlAhmadi A.S. Outcome Of MicroPulse Transscleral Photocoagulation In Different Types Of Glaucoma. Clinical Ophthalmology. 2019;13:2353–2360. DOI: 10.2147/opth.s226554

68. Varikuti V.N.V., Shah P., Rai O., Chaves A.C., Miranda A., Lim B.-A., Dorairaj S.K., Sieminski S.F. Outcomes of Micropulse Transscleral Cyclophotocoagulation in Eyes With Good Central Vision. Journal of Glaucoma. 2019;28(10):901–905. DOI: 10.1097/ijg.0000000000001339

69. Baum O., Wachsmann-Hogiu S., Milner T., Sobol E. Laser-assisted formation of micropores and nanobubbles in sclera promote stable normalization of intraocular pressure. Laser Physics Letters. 2017;14(6):065601. DOI: 10.1088/1612-202x/aa6b1a

70. Большунов А.В., Соболь Э.Н., Федоров А.А., Баум О.И., Омельченко А.И., Хомчик О.В., Щербаков Е.М. Изучение возможности усиления фильтрации внутриглазной жидкости при неразрушающем лазерном воздействии на склеру в проекции плоской части цилиарного тела (экспериментальное исследование). Вестник офтальмологии. 2013;129(1):22–26.

71. Аветисов С.Э., Большунов А.В., Хомчик О.В., Фёдоров А.А., Сипливый В.И., Баум О.И., Омельченко А.И., Щербаков Е.М., Панченко В.Я., Соболь Э.Н. Лазериндуцированное повышение гидропроницаемости склеры в лечении резистентных форм открытоугольной глаукомы. Национальный журнал глаукома. 2015;14(2):5–13.


Рецензия

Для цитирования:


Юсеф Ю., Гамидов А.А., Карпилова М.А., Гаврилина П.Д. Место транссклеральных технологий в лазерном лечении глаукомы: история, этапы развития, перспективы. Офтальмология. 2021;18(3S):695-702. https://doi.org/10.18008/1816-5095-2021-3S-695-702

For citation:


Yusef Yu., Gamidov A.A., Karpilova M.A., Gavrilina P.D. The Place of Transscleral Technologies in Laser Treatment of Glaucoma: History, Stages of Development, Prospects. Ophthalmology in Russia. 2021;18(3S):695-702. (In Russ.) https://doi.org/10.18008/1816-5095-2021-3S-695-702

Просмотров: 910


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)