Evaluation of the Ophthalmotoxic Effect of Quantum Dots InP/ZnSe/ZnS 660 and Bioconjugates Based on Them in Terms of the Prospects for the Treatment of Resistant Endophthalmitis. Experimental Research. Part 2 (Stage 1)
https://doi.org/10.18008/1816-5095-2021-4-876-884
Abstract
The problem of chemo/antibiotic resistance in modern medicine remains relevant today. The sensitivity of microorganisms (MO) determines the range of drugs used, which ultimately affects the effectiveness of treatment and the prognosis for the patient. However, taking into account the adaptation process of individual strains of MO, the uncontrolled use of antibiotics will inevitably lead to the maintenance of the so-called crisis of antibiotic resistance throughout the world, as well as the formation of a vicious circle that reduces the functional and anatomical outcomes of the treatment of any inflammatory diseases, including ophthalmological ones. This article presents the process of experimental creation and certification, assessment of the physicochemical properties of quantum dots, as well as biological nanoconjugates as an option for overcoming the antibiotic resistance of certain strains of microorganisms in the treatment of infectious and inflammatory pathology in ophthalmology, in particular endophthalmitis. Also, an animal model has demonstrated the safety of using InP / ZnSe / ZnS 660 quantum dot solutions for intravitreal administration in pure form and in combination with antibiotics.
About the Authors
V. O. PonomarevRussian Federation
Ponomarev Vyacheslav O., PhD. surgeon, head of diagnostic department
Bardin str., 4A, Ekaterinburg, 620149
V. N. Kazaykin
Russian Federation
Kazajkin Viktor N., MD, head of vitreoretinal department
Bardin str., 4A, Ekaterinburg, 620149
A. V. Lizunov
Russian Federation
Lizunov Alexandr V., ophthalmologist
Bardin str., 4A, Ekaterinburg, 620149
A. S. Vokhmintsev
Russian Federation
Vokhmintsev Alexander S., PhD of Phys. and Math., Associate Professor
Mira str., 32, Yekaterinburg, 620078
I. A. Vainshtein
Russian Federation
Weinstein Ilya A., Dr. of Phys. and Math., Professor, senior researcher
Mira str., 32, Yekaterinburg, 620078
S. V. Dezhurov
Russian Federation
Dezhurov Sergey V., researcher
May 9 str., 7A, Dubna, Moscow region, 141980
V. V. Marysheva
Russian Federation
Marysheva Victoria V., deputy director
Volgogradskaya str., 86, Yekaterinburg, 620146
References
1. Barry P., Cordoves L., Gardner S. ESCRS Guidelines for Prevention and Treatment of Endopthalmitis Following Cataract Surgery. Co Dublin: Temple House, Temple Road, Blackrock. 2013:1–22.
2. Read A.F., Woods R.J. Antibiotic resistance management. Evol. Med. Public Health. 2014;14(1):147. DOI: 10.1093/emph/eou024
3. Bartlett J.G., Gilbert D.N., Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013;56(10):1445–1450. DOI: 10.1093/cid / cit070
4. No authors listed. The antibiotic alarm. Nature. 2013;495(7440):14. DOI: 10.1038/495141a
5. Viswanathan V.K. Off-label abuse of antibiotics by bacteria. Gut. Microbes. 2014;5(1):3–4. DOI: 10.4161 / gmic.28027
6. Luyt C.E., Brechot N., Trouillet J.L., Chastre J. Antibiotic stewardship in the intensive care unit. Crit. Care. 2014;18(5):480. DOI: 10.1186/s13054-014-0480-6
7. Grzybowski A., Brona P., Kim S.J. Microbial flora and resistance in ophthalmology: a review. Graefes Arch. Clin. Exp. Ophthalmol. 2017;255(5):851–862. DOI: 10.1007/ s00417-017-3608-y
8. Miller D. Update on the Epidemiology and Antibiotic Resistance of Ocular Infections. Middle East Afr. J. Ophthalmol. 2017;24(1):30–42. DOI: 10.4103/meajo.MEAJO_276_16
9. Michael C.A., Dominey-Howes D., Labbate M. The antibiotic resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145. DOI: 10.3389/fpubh.2014.00145
10. Piddock L.J. The crisis of no new antibiotics—what is the way forward? Lancet Infect Dis. 2012;12(3):249–253. DOI: 10.1016/S1473-3099(11)70316-4
11. Lushniak B.D. Antibiotic resistance: a public health crisis. Public Health Rep. 2014;129(4):314–316. DOI: 10.1177/003335491412900402
12. Hillier R.J., Arjmand P., Rebick G. Post-traumatic vancomycin-resistant enterococcal endophthalmitis. J. Ophthalmic Inflamm. Infect. 2013;3:42. DOI: 10.1186/18695760-3-42
13. Sharma S., Desai R.U., Pass A.B. Vancomycin-Resistant Enterococcal Endophthalmitis. Arch. Ophthalmol. 2010;128(6):794–795. DOI: 10.1001/archophthalmol.2010.77
14. Kansal V., Rahimy E., Garg S. Endogenous methicillin-resistant Staphylococcus aureus endophthalmitis secondary to axillary phlegmon: a case report. Can. J. Ophthalmol. 2017;52 (3):97–99. DOI: 10.1016/j.jcjo.2016.11.016
15. Relhan N., Pathengay A., Schwartz S.G., Flynn H.W. Jr. Emerging Worldwide Antimicrobial Resistance, Antibiotic Stewardship and Alternative Intravitreal Agents for the Treatment of Endophthalmitis. Retina. 2017;37(5):811–818. DOI: 10.1097/ IAE.0000000000001603
16. Galanov A.I. Development of a magnetically controlled system for the delivery of chemotherapy drugs based on nanosized iron particles. Siberian Journal of Oncology = Sibirskiy onkologicheskiy zhurnal. 2008;3(27):50–57 (In Russ.).
17. Khlebtsov N.G. Optics and biophotonics of nanoparticles with plasmon resonance. Quantum electronics = Kvantovaja jelektronika. 2008;38(6):504–529. (In Russ.).
18. Khlebtsov N.G., Dykman L.A. Biodistribution and toxicity of gold nanoparticles. Russian nanotechnology. Reviews = Russian nanotechnology. Reviews. 2011;6(1–2):39–59 (In Russ.).
19. Andrusishina I.N. Metal nanoparticles: production methods, physicochemical properties, research methods and toxicity assessment. Current toxicological problems. 2011;3:5–14 (In Ukr.).
20. Akchurin G.G. Jr., Akchurin G. G., Bogatyrev V. A., Maksimova I. L. ear-infrared laser photothcrmal therapy and photodynamicinactivation of cells by using gold nanoparticles and dyes Proc. SPIE. 2007;6645(66451U):12.
21. Oleinikov V.A., Sukhanova A.V., Nabiev I.R. Fluorescent semiconductor nanocrystals in biology and medicine. Russian nanotechnology = Rossiyskie nanotehnologii. 2007;2(1–2):160–173 (In Russ.).
22. Zyryanov G.V. Visual and electrochemical detection of nitrous explosives: monograph Yekaterinburg: UrFU, 2011. 85 p. (In Russ.).
23. Klimov V.V. Nanoplasmonics. 2nd ed., Rev. Moscow: Fizmatlit, 2010. 480 p. (In Russ.).
24. Courtney C.M., Goodman S.M., Nagy T.A., Levy M., Bhusal P., Madinger N.E., Corrella S Detweiler. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. Sci. Adv. 2017;3(10):1–10. DOI: 10.1126/ sciadv.170177
25. Courtney C.M., Goodman S.M., McDaniel J.A., Madinger N.E., Chatterjee A., Nagpal P. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 2016;15:529–534. DOI: 10.1038/nmat4542
26. Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V. Evaluation of the Ophthalmotoxic Effect of Quantum Dots and Bioconjugates Based on Them in Terms of the Prospects for the Treatment of Resistant Endophthalmitis. Experimental Research (Stage 1). Ophthalmology in Russia = Oftal’mologiya. 2021;18(3):476–487 (In Russ.). DOI: 10.18008/1816-5095-2021-3-476-487
27. Jo J.H., Jo D.Y., Lee S.H. InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices. ACS Applied Nano Material. 2020;3(2):1972–1980. DOI: 10.1021/acsanm.0c00008
28. Savchenko S.S., Weinstein I.A. Inhomogeneous Broadening of the Exciton Band in Optical Absorption Spectra of InP/ZnS Nanocrystals/ Nanomaterials. 2019;9(5):716. DOI: 10.3390/nano9050716
29. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. Temperature-induced shift of the exciton absorption band in InP/ZnS quantum dots. Opt. Mater. Express. 2017;7(2):354. DOI: 10.1364/OME.7.000354
30. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina. J. Phys. Conf. Ser. 2016;741(1):012151. DOI: 10.1088/1742-6596/741/1/012151
31. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. Exciton–Phonon Interactions and Temperature Behavior of Optical Spectra in Core/Shell InP/ZnS Quantum Dots. Core/Shell Quantum Dots. Ed. Tong X., Wang Z.M. Springer, 2020. P. 165– 196. DOI: 10.1007/978-3-030-46596-4_5
Review
For citations:
Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V., Marysheva V.V. Evaluation of the Ophthalmotoxic Effect of Quantum Dots InP/ZnSe/ZnS 660 and Bioconjugates Based on Them in Terms of the Prospects for the Treatment of Resistant Endophthalmitis. Experimental Research. Part 2 (Stage 1). Ophthalmology in Russia. 2021;18(4):876-884. (In Russ.) https://doi.org/10.18008/1816-5095-2021-4-876-884