Preview

Ophthalmology in Russia

Advanced search

Evaluation of the Ophthalmotoxic Effect of Quantum Dots InP/ZnSe/ZnS 660 and Bioconjugates Based on Them in Terms of the Prospects for the Treatment of Resistant Endophthalmitis. Experimental Research. Part 2 (Stage 1)

https://doi.org/10.18008/1816-5095-2021-4-876-884

Abstract

The problem of chemo/antibiotic resistance in modern medicine remains relevant today. The sensitivity of microorganisms (MO) determines the range of drugs used, which ultimately affects the effectiveness of treatment and the prognosis for the patient. However, taking into account the adaptation process of individual strains of MO, the uncontrolled use of antibiotics will inevitably lead to the maintenance of the so-called crisis of antibiotic resistance throughout the world, as well as the formation of a vicious circle that reduces the functional and anatomical outcomes of the treatment of any inflammatory diseases, including ophthalmological ones. This article presents the process of experimental creation and certification, assessment of the physicochemical properties of quantum dots, as well as biological nanoconjugates as an option for overcoming the antibiotic resistance of certain strains of microorganisms in the treatment of infectious and inflammatory pathology in ophthalmology, in particular endophthalmitis. Also, an animal model has demonstrated the safety of using InP / ZnSe / ZnS 660 quantum dot solutions for intravitreal administration in pure form and in combination with antibiotics.

About the Authors

V. O. Ponomarev
Ekaterinburg Eye Microsurgery Center
Russian Federation

Ponomarev Vyacheslav O., PhD. surgeon, head of diagnostic department

Bardin str., 4A, Ekaterinburg, 620149



V. N. Kazaykin
Ekaterinburg Eye Microsurgery Center
Russian Federation

Kazajkin Viktor N., MD, head of vitreoretinal department

Bardin str., 4A, Ekaterinburg, 620149



A. V. Lizunov
Ekaterinburg Eye Microsurgery Center
Russian Federation

Lizunov Alexandr V., ophthalmologist

Bardin str., 4A, Ekaterinburg, 620149



A. S. Vokhmintsev
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Vokhmintsev Alexander S., PhD of Phys. and Math., Associate Professor

Mira str., 32, Yekaterinburg, 620078



I. A. Vainshtein
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Weinstein Ilya A., Dr. of Phys. and Math., Professor, senior researcher

Mira str., 32, Yekaterinburg, 620078



S. V. Dezhurov
Applied Acoustic Research Institute
Russian Federation

Dezhurov Sergey V., researcher

May 9 str., 7A, Dubna, Moscow region, 141980



V. V. Marysheva
Animal Health LLC
Russian Federation

Marysheva Victoria V., deputy director

Volgogradskaya str., 86, Yekaterinburg, 620146



References

1. Barry P., Cordoves L., Gardner S. ESCRS Guidelines for Prevention and Treatment of Endopthalmitis Following Cataract Surgery. Co Dublin: Temple House, Temple Road, Blackrock. 2013:1–22.

2. Read A.F., Woods R.J. Antibiotic resistance management. Evol. Med. Public Health. 2014;14(1):147. DOI: 10.1093/emph/eou024

3. Bartlett J.G., Gilbert D.N., Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013;56(10):1445–1450. DOI: 10.1093/cid / cit070

4. No authors listed. The antibiotic alarm. Nature. 2013;495(7440):14. DOI: 10.1038/495141a

5. Viswanathan V.K. Off-label abuse of antibiotics by bacteria. Gut. Microbes. 2014;5(1):3–4. DOI: 10.4161 / gmic.28027

6. Luyt C.E., Brechot N., Trouillet J.L., Chastre J. Antibiotic stewardship in the intensive care unit. Crit. Care. 2014;18(5):480. DOI: 10.1186/s13054-014-0480-6

7. Grzybowski A., Brona P., Kim S.J. Microbial flora and resistance in ophthalmology: a review. Graefes Arch. Clin. Exp. Ophthalmol. 2017;255(5):851–862. DOI: 10.1007/ s00417-017-3608-y

8. Miller D. Update on the Epidemiology and Antibiotic Resistance of Ocular Infections. Middle East Afr. J. Ophthalmol. 2017;24(1):30–42. DOI: 10.4103/meajo.MEAJO_276_16

9. Michael C.A., Dominey-Howes D., Labbate M. The antibiotic resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145. DOI: 10.3389/fpubh.2014.00145

10. Piddock L.J. The crisis of no new antibiotics—what is the way forward? Lancet Infect Dis. 2012;12(3):249–253. DOI: 10.1016/S1473-3099(11)70316-4

11. Lushniak B.D. Antibiotic resistance: a public health crisis. Public Health Rep. 2014;129(4):314–316. DOI: 10.1177/003335491412900402

12. Hillier R.J., Arjmand P., Rebick G. Post-traumatic vancomycin-resistant enterococcal endophthalmitis. J. Ophthalmic Inflamm. Infect. 2013;3:42. DOI: 10.1186/18695760-3-42

13. Sharma S., Desai R.U., Pass A.B. Vancomycin-Resistant Enterococcal Endophthalmitis. Arch. Ophthalmol. 2010;128(6):794–795. DOI: 10.1001/archophthalmol.2010.77

14. Kansal V., Rahimy E., Garg S. Endogenous methicillin-resistant Staphylococcus aureus endophthalmitis secondary to axillary phlegmon: a case report. Can. J. Ophthalmol. 2017;52 (3):97–99. DOI: 10.1016/j.jcjo.2016.11.016

15. Relhan N., Pathengay A., Schwartz S.G., Flynn H.W. Jr. Emerging Worldwide Antimicrobial Resistance, Antibiotic Stewardship and Alternative Intravitreal Agents for the Treatment of Endophthalmitis. Retina. 2017;37(5):811–818. DOI: 10.1097/ IAE.0000000000001603

16. Galanov A.I. Development of a magnetically controlled system for the delivery of chemotherapy drugs based on nanosized iron particles. Siberian Journal of Oncology = Sibirskiy onkologicheskiy zhurnal. 2008;3(27):50–57 (In Russ.).

17. Khlebtsov N.G. Optics and biophotonics of nanoparticles with plasmon resonance. Quantum electronics = Kvantovaja jelektronika. 2008;38(6):504–529. (In Russ.).

18. Khlebtsov N.G., Dykman L.A. Biodistribution and toxicity of gold nanoparticles. Russian nanotechnology. Reviews = Russian nanotechnology. Reviews. 2011;6(1–2):39–59 (In Russ.).

19. Andrusishina I.N. Metal nanoparticles: production methods, physicochemical properties, research methods and toxicity assessment. Current toxicological problems. 2011;3:5–14 (In Ukr.).

20. Akchurin G.G. Jr., Akchurin G. G., Bogatyrev V. A., Maksimova I. L. ear-infrared laser photothcrmal therapy and photodynamicinactivation of cells by using gold nanoparticles and dyes Proc. SPIE. 2007;6645(66451U):12.

21. Oleinikov V.A., Sukhanova A.V., Nabiev I.R. Fluorescent semiconductor nanocrystals in biology and medicine. Russian nanotechnology = Rossiyskie nanotehnologii. 2007;2(1–2):160–173 (In Russ.).

22. Zyryanov G.V. Visual and electrochemical detection of nitrous explosives: monograph Yekaterinburg: UrFU, 2011. 85 p. (In Russ.).

23. Klimov V.V. Nanoplasmonics. 2nd ed., Rev. Moscow: Fizmatlit, 2010. 480 p. (In Russ.).

24. Courtney C.M., Goodman S.M., Nagy T.A., Levy M., Bhusal P., Madinger N.E., Corrella S Detweiler. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. Sci. Adv. 2017;3(10):1–10. DOI: 10.1126/ sciadv.170177

25. Courtney C.M., Goodman S.M., McDaniel J.A., Madinger N.E., Chatterjee A., Nagpal P. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 2016;15:529–534. DOI: 10.1038/nmat4542

26. Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V. Evaluation of the Ophthalmotoxic Effect of Quantum Dots and Bioconjugates Based on Them in Terms of the Prospects for the Treatment of Resistant Endophthalmitis. Experimental Research (Stage 1). Ophthalmology in Russia = Oftal’mologiya. 2021;18(3):476–487 (In Russ.). DOI: 10.18008/1816-5095-2021-3-476-487

27. Jo J.H., Jo D.Y., Lee S.H. InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices. ACS Applied Nano Material. 2020;3(2):1972–1980. DOI: 10.1021/acsanm.0c00008

28. Savchenko S.S., Weinstein I.A. Inhomogeneous Broadening of the Exciton Band in Optical Absorption Spectra of InP/ZnS Nanocrystals/ Nanomaterials. 2019;9(5):716. DOI: 10.3390/nano9050716

29. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. Temperature-induced shift of the exciton absorption band in InP/ZnS quantum dots. Opt. Mater. Express. 2017;7(2):354. DOI: 10.1364/OME.7.000354

30. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina. J. Phys. Conf. Ser. 2016;741(1):012151. DOI: 10.1088/1742-6596/741/1/012151

31. Savchenko S.S., Vokhmintsev A.S., Weinstein I.A. Exciton–Phonon Interactions and Temperature Behavior of Optical Spectra in Core/Shell InP/ZnS Quantum Dots. Core/Shell Quantum Dots. Ed. Tong X., Wang Z.M. Springer, 2020. P. 165– 196. DOI: 10.1007/978-3-030-46596-4_5


Review

For citations:


Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V., Marysheva V.V. Evaluation of the Ophthalmotoxic Effect of Quantum Dots InP/ZnSe/ZnS 660 and Bioconjugates Based on Them in Terms of the Prospects for the Treatment of Resistant Endophthalmitis. Experimental Research. Part 2 (Stage 1). Ophthalmology in Russia. 2021;18(4):876-884. (In Russ.) https://doi.org/10.18008/1816-5095-2021-4-876-884

Views: 581


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)