Preview

Ophthalmology in Russia

Advanced search

Laboratory Analysis of the Anti-Infectious Activity of Quantum Dots and Bioconjugates Based on Them in the Aspect of the Prospects for the Treatment of Inflammatory Diseases of the Eye. Experimental Research (Part 3)

https://doi.org/10.18008/1816-5095-2022-1-188-194

Abstract

This article presents the third part of an experimental study on the prospects and possibilities of using quantum dots and bioconjugates created on their basis in the treatment of inflammatory diseases of the eye. Taking into account the previously obtained results on the possibility of “safe” use of CdTe/Cd and InP/ZnSe/ZnS quantum dots on an animal model under conditions of intravitreal administration, the aim of the current stage was to analyze their antimicrobial activity in a bacteriological laboratory.

Materials and methods. As QDs, we took two types of artificial fluorophores capable of generating superoxide radicals synthesized according to a special technical assignment at the Federal State Unitary Enterprise “Research Institute of Applied Acoustics”, Dubna, Moscow Region: type 1 — colloidal solution of QD CdTe / Cd MPA 710 10 % of the mass. Type 2 — colloidal solution of QD InP / ZnSe / ZnS 650 10 % wt. The study included “museum” and nosocomial strains of microorganisms, and the activity of points was assessed using the diskdiffusion method, followed by an assessment of the zones of inhibition of bacterial growth. Concentrations of 0.1 %, 0.01 %, and 0.001 % quantum dots were tested, as well as solutions of bioconjugates (antibiotic + quantum dots) of Vancomycin, Levofloxacin, Ceftazidime and Cefotaxime.

Results. Based on the data obtained, it was concluded that quantum dots potentiate the action of the sensitivity of individual microorganisms, both outpatient and hospital strains.

About the Authors

V. O. Ponomarev
Eye Microsurgery Ekaterinburg Center
Russian Federation

Ponomarev Vjacheslav О., PhD, ophthalmic surgeon, Head of Diagnostic department

A. Bardina str., 4A, Ekaterinburg, 620149



V. N. Kazaykin
Eye Microsurgery Ekaterinburg Center
Russian Federation

Kazajkin Viktor N., MD, Head of Vitreoretinal Department

A. Bardina str., 4A, Ekaterinburg, 620149



A. V. Lizunov
Eye Microsurgery Ekaterinburg Center
Russian Federation

Lizunov Alexandr V., Ophthalmologist

A. Bardina str., 4A, Ekaterinburg, 620149



A. S. Vokhmintsev
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Vokhmintsev Alexander S., PhD of Physics and Mathematics, Associate Professor

Mira str., 32, Yekaterinburg, 620078



I. A. Weinstein
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Weinstein Ilya A., Dr. of Science in Physics and Mathematics, Professor, senior researcher

Mira str., 32, Yekaterinburg, 620078



S. M. Rozanova
Clinical and Diagnostic Center
Russian Federation

Rozanova Sofia M., PhD in Biological Sciences, Associate Professor, Head of the Laboratory

8 Marta str., 78-V, Ekaterinburg, 620144



M. V. Kirf
Clinical and Diagnostic Center
Russian Federation

Kirf Marina V., Doctor-bacteriologist

8 Marta str., 78-V, Ekaterinburg, 620144



References

1. Sait Egrilmez S., Yildirim-Theveny S. Treatment-Resistant Bacterial Keratitis: Challenges and Solutions. Clin Ophthalmol. 2020;14:287–297. DOI: 10.2147/OPTH.S181997

2. Silvester A., Neal T., Czanner G. Adult bacterial conjunctivitis: resistance patterns over 12 years in patients attending a large primary eye care centre in the UK. BMJ Open Ophthalmol. 2017;1(1):e000006. DOI: 10.1136/bmjophth-2016-000006

3. Friling E., Montan P. Bacteriology and cefuroxime resistance in endophthalmitis following cataract surgery before and after the introduction of prophylactic intracameral cefuroxime: a retrospective single-centre study. J Hosp Infect. 2019 Jan;101(1):88–92. DOI: 10.1016/j.jhin.2018.02.005. Epub 2018 Feb 9.

4. Read A.F., Woods R.J. Antibiotic resistance management. Evol. Med. Public Health. 2014;14(1):147. DOI: 10.1093/emph/eou024

5. Bartlett J.G., Gilbert D.N., Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013;56(10):1445–1450. DOI: 10.1093/cid / cit070

6. Viswanathan V.K. Off-label abuse of antibiotics by bacteria. Gut. Microbes. 2014;5(1):3–4. DOI: 10.4161/gmic.28027

7. Luyt C.E., Brechot N., Trouillet J.L., Chastre J. Antibiotic stewardship in the intensive care unit. Crit. Care. 2014;18(5):480. DOI: 10.1186/s13054-014-0480-6

8. Michael C.A., Dominey-Howes D., Labbate M. The antibiotic resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145. DOI: 10.3389/fpubh.2014.00145

9. Khlebtsov N.G. Optics and biophotonics of nanoparticles with plasmon resonance. Quantum electronics = Kvantovaya elektronika. 2008;38(6):504–529 (In Russ.).

10. Galanov A.I., Yurmazov T.A., Saveliev G.G. Development of a magnetically controlled system for the delivery of chemotherapeutic agents based on nanosized iron particles. Siberian Journal of Oncology = Sibirskiн onkologicheskiн zhurnal. 2008;3(27):50–57 (In Russ.).

11. Courtney C.M., Goodman S.M., Nagy T.A., Levy M., Bhusal P., Madinger N.E. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. Sci. Adv. 2017;3(10):1–10. DOI: 10.1126/sciadv.170177

12. Courtney C.M., Goodman S.M., McDaniel J.A., Madinger N.E., Chatterjee A., Nagpal P. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 2016;15:529–534. DOI: 10.1038/nmat4542

13. Valko M., Leibfritz D., Moncol J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. DOI: 10.1016/j.biocel.2006.07.001

14. Imlay J.A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 2013;11:443–454. DOI: 10.1038/nrmicro3032

15. Goodman M., Levy M. Fei-Fei L. Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy. Front. Chem. 2018;46(6):1–12. DOI: https://doi.org/10.3389/fchem.2018.00046

16. Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V. Evaluation of the Ophthalmotoxic Effect of Quantum Dots and Bioconjugates Based on Them in Terms of the Prospects for the Treatment of Resistant Endophthalmitis. Experimental Research (Stage 1). Ophthalmology in Russia = Oftal’mologiya. 2021;18(3):476–487 (In Russ.). DOI: 10.18008/1816-5095-2021-3-476-487

17. Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Vainshtein I.A., Dezhurov S.V., Marysheva V.V. Evaluation of the Ophthalmotoxic Effect of Quantum Dots InP/ZnSe/ZnS 660 and Bioconjugates Based on Them in Terms of the Prospects for the Treatment of Resistant Endophthalmitis. Experimental Research. Part 2 (Stage 1). Ophthalmology in Russia = Oftal’mologiya.. 2021;18(4):876–884 (In Russ.). DOI: 10.18008/1816-5095-2021-4-876-884


Review

For citations:


Ponomarev V.O., Kazaykin V.N., Lizunov A.V., Vokhmintsev A.S., Weinstein I.A., Rozanova S.M., Kirf M.V. Laboratory Analysis of the Anti-Infectious Activity of Quantum Dots and Bioconjugates Based on Them in the Aspect of the Prospects for the Treatment of Inflammatory Diseases of the Eye. Experimental Research (Part 3). Ophthalmology in Russia. 2022;19(1):188-194. (In Russ.) https://doi.org/10.18008/1816-5095-2022-1-188-194

Views: 560


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)