Preview

Ophthalmology in Russia

Advanced search

Liquid Biopsy for Uveal Melanoma. Does It Make Sense?

https://doi.org/10.18008/1816-5095-2022-3-594-602

Abstract

Purpose: to study the informativeness and appropriateness of liquid biopsy in uveal melanoma (UM).

Material and methods. Performed a liquid biopsy (synonym: vitreous fluid biopsy, CST) of enucleated eyes with UM. CST samples were used to quantify the concentration of pro-(IL-8, angiogenin, TNF-α, VEGF, bFGF) and antiangiogenic (IFN-α, TGF-β, IFN-γ) growth factors by multiplex flow cytometry. Compared with the indicators of patients with senile cataracts.

Results. Liquid biopsy provided valuable and reliable information about the spectrum of cytokines and their quantitative indicators in the CTZ of the eyes with UM. Compared with senile cataracts in the vitreous fluid of the eyes with UM, there was a significant increase in the frequency of detection and level of proangiogenic cytokines TNF-α (80.0 % vs. 47.5 %, p < 0.05; Msr ± m: 4.3 ± 1.1 pg/ml against 1.4 ± 0.3 pg/ml, p < 0.05), IL-8 (100 % vs. 75 %, p < 0.01; 323.2 ± 227.9 pg/ml versus 8.5 ± 1.5 pg/ml, r < 0.001), angiogenin (11704.9 ± 1767.7 pg/ml versus 2820.15 ± 1404.90 pg/ml, r < 0.01), VEGF (100.0 % vs. 68.2 %; p < 0.05; 471.49 ± 154.60 pg/ml vs. 18.4 ± 3.2 pg/ml, p < 0.05; 471.49 ± 154.60 pg/ml vs. 18.4 ± 3.2 pg/ml, p < 0.05) and bFGF (60.0 % vs. 26.7 %, p < 0.05; Msr: 44.6 ± 16.2 vs. 2.7 ± 1.0, p < 0.001). In both groups of patients, the antiangiogenic factor TGF-β was not detected, but the concentration of IFN-γ was found in five of the eight samples at the level of 14.9 ± 12.2 pg/ml, and the levels of IFN were 4 times higher: 17.6 ± 3.9 pg/ml against 4.4 ± 0.4 pg/ml (p < 0.05).

Conclusions. Liquid eye biopsy with UM using multiplex flow cytometry can be a valuable and highly informative tool for studying UM phenotypes, in the development and selection of molecular targets for antiangiogenic or other targeted therapies. Elevated levels of proangiogenic growth factors (IL-8, angiogenin, TNF-α, VEGF and bFGF) in vitreous fluid in UM indicate the presence simultaneously of three mechanisms for stimulating angiogenesis, two of which are independent of VEGF, act independently, and may show synergism. Insufficiently high levels of interferons (IFN-γ and IFN-α) against the background of the absence of TGF-β in the vitreous fluid allow us to think that the secretion and control of the regulation of the natural angiostatic link of angiogenesis in the eyes with choroidal melanoma is suppressed. High levels of cytokines with pluripotent (proangiogenic and pro-inflammatory) properties indicate that in choroidal tumors, inflammation may play the role of a promoter of angiogenesis. 

About the Authors

V. E. Ovanesyan
Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of FMBA of Russia
Russian Federation

applicant,

Volokolamskoe highway, 91, Moscow, 125371



V. G. Likhvantseva
Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of FMBA of Russia; A.I. Burnazyan Federal Biophysical Center of FMBA of Russia
Russian Federation

МD, Professor, Volokolamskoe highway, 91, Moscow, 125371;

consultant, Gamalei str., 15, Moscow, 123098



S. I. Rychkova
Burnazyan Medical-Biological University of Innovation and Continuing Education, Federal Medical-Biological Agency
Russian Federation

Associate Professor,

Gamalei str., 15, Moscow, 123098



S. A. Selkov
Research Institute of Obstetrics, Gynecology and Reproduction named after D.O. Ott
Russian Federation

head of the Department of immunology and intercellular interactions,

Mendeleevskaya Line, 3, St. Petersburg, 199034



References

1. Yang J., Manson D.K., Marr B.P., Carvajal R.D. Treatment of uveal melanoma: Where are we now? Ther. Adv. Med. Oncol. 2018;10:1–17. DOI: 10.1177/1758834018757175

2. Aronow M.E., Topham K., Singh A.D. Uveal Melanoma: 5Year Update on Incidence, Treatment, and Survival (SEER 1973–2013). Ocul. Oncol. Pathol. 2018;4:145– 151. DOI: 10.1159/000480640

3. Singh A.D., Turell M.E., Topham A.K. Uveal melanoma: trends in incidence, treat ment, and survival. Ophthalmology 2011;118(9):1881–1885. DOI: 10.1016/j.oph tha.2011.01.040

4. Saakyan S.V., Myakoshina E.B. Zaharova G.P, Garri D. Surviv al of patients with small to mediumsized melanoma. Effective pharmacotherapy = Effektivnaya farmakoterapiya. 2020:16;(21):18–22 (In Russ). DOI: 10.33978/23073586202016211822

5. Amaro A., Gangemi R., Piaggio F., Angelini G., Barisione G., Ferrini S., Pfeffer U. The biology of uveal melanoma. Cancer Metastasis Rev. 2017:36:109–140. DOI: 10.1007/s1055501796633

6. Castet F., GarciaMulero S., SanzPamplona R., Cuellar A., Casanovas O., Caminal J.M., Piulats J.M. Uveal Melanoma, Angiogenesis and Immunotherapy, Is There Any Hope? Cancers. 2019;11:834. DOI: 10.3390/cancers11060834

7. AsencioDuran M., DabadMoreno J.V., VicandiPlaza B., ManzanoMuñoz B., CapoteDíez M., AmorenaSantisteban G. The Vitreous Body and Its Role in the Diagnosis of Eye Pathologies Medical Research Archives. 2021;9(9):2–24. DOI: 10.18103/mra.v9i9.2543

8. Lee C.S., Jun I.H., Kim T.I., Byeon S.H., Koh H.J., Lee S.C. Expression of 12 cy tokines in aqueous humour of uveal melanoma before and after combined Ru thenium106 brachytherapy and transpupillary thermotherapy. Acta Ophthalmol. 2012;90:e314–e320. DOI: 10.1167/iovs.1210123

9. Ly L.V., Bronkhorst I.H., van Beelen E. Inflammatory cytokines in eyes with uveal melanoma and relation with macrophage infiltration. Invest Ophthalmol Vis Sci. 2010;51:5445–5451. DOI: 10.1167/iovs.105526

10. NagarkattiGude N., Bronkhorst I.H.G., van Duinen S.G., Luyten G.P.M., rtine J. Jager M.J. Сytokines and Chemokines in the Vitreous Fluid of Eyes with Uveal Melanoma. Investigative Ophthalmology & Visual Science. 2012;53:6748–6755. DOI: 10.1167/iovs.1210123

11. Kivela T., Simpson E.R., Grossniklaus H.E., Jager M.J., Sough A.D., Caminal J.M. Uveal melanoma. In: AJCC Cancer Staging Manual, 8th. New York, Springer: 2017. P. 805–817.

12. Shain H., Bagger M.M., Yu R., Chang D., Liu Sh., Vemula S., Weier J.F., Wadt K., Heegaard S., Bastian B.S., Kiilgaard J.F The genetic evolution of metastatic uveal melanoma. Nature Genetics. 2019;51:1123–1130. DOI: 10.1038/s4158801904409

13. Kaliki S., Shields C.L., Shields J.A. Uveal melanoma: Estimating prognosis Indian Journal of Ophthalmology. 2017;63(2):93–101. DOI: 10.4103/03014738.154367

14. Samkovich E.V., Panova I.E. Possibilities of identification of the vascular network of choroidal mela noma. Оphthalmology in Russia = Oftal’mologiya. 2020;17(2):172–180 (In Russ.). DOI: 10.18008/1816509520202172180

15. Grishina E.E. Analysis of survival of patients with uveal melanoma in organpreserving and liquidation treatment. Almanac of Clinical Medicine = Al’manah klinicheskoy mediciny. 2018;46(1):6875 (In Russ.)]. DOI: 10.18786/2072050520184616875

16. Virgili G., Gatta G., Ciccolallo L., Capocaccia R., Biggeri A., Crocetti E. Sur vival in patients with uveal melanoma in Europe. Archives of Ophthalmology. 2008;126(10):1413–1418. DOI: 10.1001/archopht.126.10.1413

17. Chew A.L., Spilsbury K., Isaacs T.W. Survival from uveal melanoma in Western Australia 1981–2005. Clinical & Experimental Ophthalmology. 2015;43(5):422– 428. DOI: 10.1111/ceo.12490

18. De Angelis R., Sant M., Coleman M.P., Francisci S., Bail, P., Pierannunzio D., Trama A. Cancer survival in Europe 1999–2007 by country and age: results of EURO CARE5 — a populationbased study. The Lancet Oncology. 2014;15(1):23–34. DOI: 10.1016/S14702045(13)705461

19. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA: Cancer Journal for Clinicians. 2016;66(1):7–30. DOI: 10. 3322/caac.21332

20. Kuk D., Shoushtari A., Barker C., Panageas K., Munhoz R., Momtaz P., Ariyan C., Brady M., Coit D., Bogatch K. Prognosis of Mucosal, Uveal, Acral, Nonacral Cuta neous, and Unknown Primary Melanoma from the Time of First Metastasis. Oncologist. 2016;21:848–854. DOI: 10.1634/theoncologist.20150522

21. Pons F., Plana M., Caminal J.M., Pera J., Fernandes I., Perez J., GarciaDelMuro X., Marcoval J., Penin R., Fabra A. Metastatic uveal melanoma: Is there a role for con ventional chemotherapy? — A single center study based on 58 patients. Melanoma Res. 2011;21:217–222. DOI: 10.1097/CMR.0b013e3283457726

22. Carvajal R.D., Schwartz G.K., Tezel T., Marr B., Francis J.H., Nathan P.D. Metastatic disease from uveal melanoma: Treatment options and future prospects. Br. J. Ophthalmol. 2017;101:38–44. DOI: 10.1136/bjophthalmol2016309034

23. Niederkorn J.Y. Immune escape mechanisms of intraocular tumors. Prog Retin Eye Res. 2009;28:329–347. DOI: 10.1016/j.preteyeres.2009.06.002

24. Yang W., Chen P.W., Li H. PDL1: PD1 interaction contributes to the functional suppression of Tcell responses to human uveal melanoma cells in vitro. Invest Ophthalmol Vis Sci. 2008;49:2518–2525. DOI: 10.1167/iovs.071606

25. SteinStreilein J., Streilein J.W. Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. Int Rev Immunol. 2002;21:123–152. DOI: 10.1080/08830180212066

26. Brahmer J., Reckamp K.L., Baas P. Nivolumab versus Docetaxel in Advanced SquamousCell NonSmallCell Lung Cancer. N Engl J Med. 2015;373:123–135. DOI: 10.1056/NEJMoa1504627

27. Dunn G.P., Bruce A.T., Ikeda H. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998. DOI: 10.1038/ni1102991 28. Teng M.W., Ngiow S.F., Ribas A. Classifying Cancers Based on Tcell Infiltration and PDL1. Cancer Res. 2015;75:2139–2145. DOI: 10.1158/00085472.CAN150255

28. Beatty G.L., Gladney W.L. Immune escape mechanisms as a guide for cancer im munotherapy. Clin Cancer Res. 2015;21:687–692. DOI: 10.1158/10780432.CCR141860

29. Boyd S.R., Tan D., Bunce C., Gittos A.., Neale M.H., Hungerford J.L, CharnockJones S., Cree I.A. Vascular endothelial growth factor is elevated in ocular fluids of eyes harbouring uveal melanoma: identification of a potential therapeutic window. Br J Ophthalmol. 2002;86(4):448–452. DOI: 10.1136/bjo.86.4.448

30. Чехун В. Воспаление и рак. Онкология. 2009;11(4):244–245. [Chekhun V. In flammation and cancer. Oncology = Onkologiya. 2009;11(4):244–245 (In Russ.)].

31. Savel’eva O.E., Perel’muter V.M., Tashireva L.A., Denisov E.V., Isaeva A.V. Recovery as a therapeutic target in the complex treatment of malignant tumors. Siberian jour nal of oncology = Sibirskiy onkologicheskiy zhurnal. 2017;16(3):65–78 (In Russ.). DOI: 10.21294/1814486120171636578

32. Stitt A.W., Simpson D.A., Boocock C. Expression of vascular endothelial growth factor (VEGF) and its receptors is regulated in eyes with intraocular tumours. J Pathol. 1998;186:306–312. DOI: 10.1002/(SICI)10969896(1998110)186:3< 306::AIDPATH183>3.0.CO;2B

33. Sheidlow T.G., Hooper P.L., Cruckley C. Expression of vascular endothelial growth factor in uveal melanoma and its correlation with metastasis. Invest Ophthalmol Vis Sci. 1999;40:S577.

34. Cree I.A., Boyd S.R., Tan D. Angiogenesis in ocular melanoma: the role of VEGF and bFGF. Invest Ophthalmol Vis Sci. 1999;40:S577.

35. Likhvantseva V.G., Anurova O.A., Astahova S.E., Vereshchagina M.V., Ovanesyan V.E., Stepanova E.V. Vascular endothelial growth factor expression in uveal melanoma. Оphthalmology in Russia = Oftal’mologiya. 2021;18(4):914–921 (In Russ) DOI: 10.18008/1816509520214914921


Review

For citations:


Ovanesyan V.E., Likhvantseva V.G., Rychkova S.I., Selkov S.A. Liquid Biopsy for Uveal Melanoma. Does It Make Sense? Ophthalmology in Russia. 2022;19(3):594-602. (In Russ.) https://doi.org/10.18008/1816-5095-2022-3-594-602

Views: 407


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)