Preview

Ophthalmology in Russia

Advanced search

Calculation of IOL Optical Power Using OKULIX Ray-Tracing Software in Real Clinical Practice

https://doi.org/10.18008/1816-5095-2023-1-61-68

Abstract

Purpose. Comparative analysis of the accuracy of IOL optical power calculation using different biometric devices.

Patients and methods. The study included 30 patients (30 eyes) after monolateral implantation of different monofocal and multifocal IOL models with a mean follow-up of 3.0 ± 0.2 (3–4) months. The mean age was 63.5 ± 6.5 (48–84) years. In all cases, IOL implantation was preceded by cataract phacoemulsification or refractive lensectomy. For all patients, IOL optic power, axial length and keratometry data were obtained using IOLMaster 500, Pentacam HR, and Pentacam AXL+OKULIX devices. Clareon, IQ Vivity, Hoya 250/251, and XY1-SP Vivinex IOLs were implanted.

Results. The mean optical power for all implanted IOLs was +21.38 ± 3.50 D, range of values was +10.0 to +29.0 D. The average values of axial eye length were 23.50 ± 0.90 mm (21.25 to 25.19 mm). The target refractive IOLs optic power calculated with the three biometric systems did not differ significantly and was -0.464 ± 0.120 D, -0.502 ± 0.140 D, and -0.400 ± 0.110 D for IOLMaster, Pentacam, and Pentacam+OKULIX, respectively (p > 0.05). The Pentacam HR and Pentacam AXL+OKULIX had slightly lower MAE values; however, no significant differences were found in calculating IOL optical power for the three devices used (p > 0.05). When comparing the devices under study, significant differences were found for the rate of refractive power within ±0.5 D when using the IOLMaster on the one hand and OKULIX on the other (p < 0.05). The refractive error rate of ±1.0 D using the biometric devices did not differ significantly (p > 0.05).

Conclusion. This paper presents the first Russian experience of using OKULIX ray-tracing software in clinical practice to increase the accuracy of optical power calculation of various IOL models. The advantage of Pentacam AXL+OKULIX over the IOLMaster 500 biometer in achieving a target refraction of ±0.5 D is shown.

About the Authors

K. B. Pershin
“Eximer” Eye Center; Academy of postgraduate education of The Federal Medical‑Biological Agency
Russian Federation

Pershin Kirill B. - MD, Professor, medical director, ophthalmology faculty professor

Marksistskaya str., 3/1, Moscow, 109147, Russian Federation

Volokolamskoe highway, 91, Moscow, 125371, Russian Federation 



N. F. Pashinova
“Eximer” Eye Center; Academy of postgraduate education of The Federal Medical‑Biological Agency
Russian Federation

Pashinova Nadezhda F. - MD, Professor, medical director, ophthalmology faculty professor

Marksistskaya str., 3/1, Moscow, 109147, Russian Federation

Volokolamskoe highway, 91, Moscow, 125371, Russian Federation 



A. Yu. Tsygankov
“Eximer” Eye Center
Russian Federation

Tsygankov Alexander Yu. - PhD, scientific advisor, ophthalmologist

Marksistskaya str., 3/1, Moscow, 109147, Russian Federation 



I. V. Kosova
“Eximer” Eye Center
Russian Federation

Kosova Irina V. - PhD, ophthalmologist

Marksistskaya str., 3/1, Moscow, 109147, Russian Federation 



References

1. Pershin K.B., Pashinova N.F., Konovalova M.M., Tsygankov A.Iu., Konovalov M.E. Power calculation of novel single piece aspheric diffractive trifocal intraocular lens. Russian Medical Journal. Clinical Ophthalmology = Rossyjskiy medicinskiy zhurnal. Klinicheskaya oftal’mologiya. 2019;19(3):171–174 (In Russ.). DOI: 10.32364/2311-7729-2019-19-3-171-174

2. Pershin K.B., Pashinova N.F., Tsygankov A.Iu., Antonov E.A. Calculation of intraocular lens optical power with enhanced depth of focus. The EYE GLAZ. 2022;24(2):25–31 (In Russ.). DOI: 10.33791/2222-4408-2022-2-25-31

3. Frings A., Hold V., Steinwender G., El Shabrawi Y., Ardjomand N. Use of true net power in intraocular lens power calculations in eyes with prior myopic laser refractive surgery. Int Ophthalmol. 2014;34(5):1091–1096. DOI: 10.1007/s10792-014-9916-x

4. Haigis W. Challenges and approaches in modern biometry and IOL calculation. Saudi J Ophthalmol. 2012;26(1):7–12. DOI: 10.1016/j.sjopt.2011.11.007

5. Camps V.J., Piñero D.P., de Fez D., Mateo V. Minimizing the IOL power error induced by keratometric power. Optom Vis Sci. 2013;90(7):639–649. DOI: 10.1097/OPX.0b013e3182972f50.

6. Einighammer J., Oltrup T., Bende T., Jean B. Calculating intraocular lens geometry by real ray tracing. J Refract Surg. 2007;23(4):393–404. DOI: 10.3928/1081-597X-20070401-12

7. Preussner P.R., Wahl J., Lahdo H., Dick B., Findl O. Ray tracing for intraocular lens calculation. J Cataract Refract Surg. 2002;28(8):1412–1419. DOI: 10.1016/s0886-3350(01)01346-3

8. Pershin K.B., Pashinova N.F., Tsygankov A.Yu., Legkih S.L., Lih I.A. Biometry in lOL power calculations as a factor of successive cataract surgery. Cataract and refractive surgery = Kataraktal’naya i refraktsionnaya khirurgiya. 2016;16(2):15–22 (In Russ.).

9. Pershin K.B., Pashinova N.F., Tsygankov A.Yu., Legkikh S.L., Afaunova Z.Kh. Partial coherence laser interferometry and immersion ultrasonography for IOL power calculations in myopia. Cataract and refractive surgery = Kataraktal’naya i refraktsionnaya khirurgiya. 2017;17(1):10–16 (In Russ.).

10. Pershin К.B., Pashinova N.F., Likh I.A., Tsygankov А.Yu., Legkikh S.L. Intraocular Lenses Optic Power Calculation in Extremely Short Eyes. Ophthalmology in Russia = Oftal’mologiya. 2022;19(1):91–97 (In Russ.). DOI: 10.18008/1816-5095-2022-1-91-97

11. Gusev Yu.A., Belikova E.I., Tret’yak E.B., Zhezheleva L.V. Current approaches to the intraocular correction of postoperative aphakia after corneal refractive surgery (a review). Ophthalmology in Russia = Oftal’mologiya. 2015;12(3):12–21 (In Russ.) DOI: 10.18008/1816-5095-2015-3-12-21

12. Abulafia A., Hill W.E., Wang L., Reitblat O., Koch D.D. Intraocular Lens Power Calculation in Eyes After Laser In Situ Keratomileusis or Photorefractive Keratectomy for Myopia. Asia Pac J Ophthalmol (Phila). 2017;6(4):332–338. DOI: 10.22608/APO.2017187

13. Yaguchi Y., Negishi K., Saiki M., Torii H., Tsubota K. Comparison of the accuracy of intraocular lens power calculations for cataract surgery in eyes after phototherapeutic keratectomy. Jpn J Ophthalmol. 2016;60(5):365–372. DOI: 10.1007/s10384-016-0452-2

14. Rabsilber T.M., Reuland A.J., Holzer M.P., Auffarth G.U. Intraocular lens power calculation using ray tracing following excimer laser surgery. Eye (Lond). 2007;21(6):697–701. DOI: 10.1038/sj.eye.6702300

15. Gjerdrum B., Gundersen K.G., Lundmark P.O., Aakre B.M. Refractive Precision of Ray Tracing IOL Calculations Based on OCT Data versus Traditional IOL Calculation Formulas Based on Reflectometry in Patients with a History of Laser Vision Correction for Myopia. Clin Ophthalmol. 2021;15:845–857. DOI: 10.2147/OPTH.S298007

16. Jin H., Rabsilber T., Ehmer A. Comparison of ray tracing method and thinlens formula in intraocular lens power calculations. J Cataract Refract Surg. 2009;35(4):650–662. DOI: 10.1016/j.jcrs.2008.12.015

17. Olsen T., Funding M. Ray tracing analysis of intraocular lens power in situ. J Cataract Refract Surg. 2012;38:641–647. DOI: 10.1016/j.jcrs.2011.10.035

18. Preussner P.R., Wahl J., Lahdo H., Findl O. Consistent IOL calculation. Ophthalmologe. 2001;98:300–304. DOI: 10.1007/s003470170166

19. Salim S. The role of anterior segment optical coherence tomography in glaucoma. J Ophthalmol. 2012;ID 476801:1–9. DOI: 10.1155/2012/476801

20. Nakagawa T., Maeda N., Higashiura R., Hori Y., Inoue T., Nishida K. Corneal topographic analysis in patients with kerato conus using 3 dimensional anterior segment optical coherence tomography. J Cataract Refract Surg. 2011;37:1871–1878. DOI: 10.1016/j.jcrs.2011.05.027

21. Preussner P.R., Wahl J., Weitzel D. Topography based intraocular lens power selection. J Cataract Refract Surg. 2005;31:525–533. DOI: 10.1016/j.jcrs.2004.09.016

22. Mine K., Otani S., Mori Y., Kagaya F., Honbou M., Minami K., Miyata K. [Comparison of intraocular lens power calculation OKULIX using topographic data and ray tracing method with the SRK/T formula] Atarashii Ganka. 2011;28(1):131–134. [Japanese]

23. Hoffmann P.C., Wahl J., Hütz W.W., Preußner P.R. A ray tracing approach to calculate toric intraocular lenses. J Refract Surg. 2013;29(6):402–408. DOI: 10.3928/1081597X-20130515-04

24. Preussner P.R., Hoffmann P., Petermeier K. Comparison between ray tracing and 3rd generation IOL calculation formulae. Klin Monbl Augenheilkd. 2009;226(2):83–89. DOI: 10.1055/s-2008-1027966

25. Ghaffari R., Abdi P., Moghaddasi A., Heidarzadeh S., Ghahvhechian H., Kasiri M. Ray Tracing versus Thin Lens Formulas for IOL Power Calculation Using Swept Source Optical Coherence Tomography Biometry. J Ophthalmic Vis Res. 2022;17(2):176–185. DOI: 10.18502/jovr.v17i2.10788

26. Nabil K.M. Accuracy of minus power intraocular lens calculation using OKULIX ray tracing software. Int Ophthalmol. 2019;39(8):1803–1808. DOI: 10.1007/s10792-018-1007-y

27. Ghoreyshi M., Khalilian A., Peyman M., Mohammadinia M., Peyman A. Comparison of OKULIX ray tracing software with SRK T and Hoffer Q formula in intraocular lens power calculation. J Curr Ophthalmol. 2017;30(1):63–67. DOI: 10.1016/j.joco.2017.06.008


Review

For citations:


Pershin K.B., Pashinova N.F., Tsygankov A.Yu., Kosova I.V. Calculation of IOL Optical Power Using OKULIX Ray-Tracing Software in Real Clinical Practice. Ophthalmology in Russia. 2023;20(1):61-68. (In Russ.) https://doi.org/10.18008/1816-5095-2023-1-61-68

Views: 645


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)