Optical coherence tomography and its role in the diagnosis of ocular hypertension, preperimetric and perimetric glaucoma
https://doi.org/10.18008/1816-5095-2015-1-46-56
Abstract
Aim. To study diagnostic capabilities of OCT parameters (ganglion cell complex/GCC and retinal nerve fiber layer/RNFL) and their ability to discriminate between normal and ocular hypertension (OH), preperimetric glaucoma (PPG), and early, moderate, and advanced perimetric glaucoma (PG) eyes.
Material and methods. 353 eyes enrolled in the study were divided into six groups: OH (32 eyes), PPG (46 eyes), early PG (104 eyes), moderate PG (54 eyes), advanced PG (60 eyes), and healthy individuals (57 eyes). Complete eye examination including standard automated perimetry and OCT was performed. Avg. GCC, Inf. GCC, Sup. GCC, GLV, FLV, and Avg., Sup. and Inf. RNFL (ONH map) were measured. ROC curves were constructed. Sensitivity and specificity of each parameter, positive (PLR) and negative likelihood ratio (NLR) were analyzed.
Results. In OH group, sensitivity and specificity of all parameters were above 66% (> 98% for FLV and GLV). In PPG group, sensitivity and specificity were above 82% (>91% for GLV, Avg. GCC Avg. RNFL and Sup. RNFL). In OH group, GLV and Inf. GCC were the most accurate diagnostic parameters (0.795 and 0.790, respectively). In PPG group, GLV was the most accurate diagnostic parameter (0.981). In early PG group, maximum sensitivity and specificity were found for Inf. GCC (91%). In moderate PG group, maximum sensitivity and specificity were found for the Avg. GCC (98%). In early and moderate PG groups, GLV was the most accurate diagnostic parameter (0.971 and 0.999, respectively). In advanced PG group, sensitivity and specificity of all parameters were about 100%. In advanced PG groups, Avg. RNFL and Inf. RNFL were the most accurate diagnostic parameters (1.0).
Conclusions. In PPG and PG groups, high sensitivity and specificity of GCC map and RNFL map parameters as well as their very high diagnostic accuracy (more than 0.90) was demonstrated. In OH group, the diagnostic accuracy of these parameters was lower (0.66). GCC map and RNFL map parameters are characterized by high and comparable diagnostic abilities irrespective of glaucoma damage severity. ОСТ is a valuable diagnostic method of early glaucomatous changes detection in OH and PPG. Diagnostic capabilities of the parameters improve as disease severity increases.
About the Authors
B. AngelovBulgaria
K. Petrova
Bulgaria
References
1. Greenfield D.S., Bagga H., Knighton R.W. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch. Ophthalmol 2003; 121 (1): 41-46.
2. Lederer D.E., Schuman J.S., Hertzmark E., Heltzer J., Velazques L.J., Fujimoto J.G., Mattox C. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am. J. Ophthalmol 2003; 135 (6): 838-843.
3. Zeimer R., Asrani S., Zou S., Quigley H., Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping: a pilot study. Ophthalmol. 1998; 105 (2): 224-231.
4. Kendell K.R., Quigley H.A., Kerrigan L.A., Pease M.E., Quigley E.N. Primary openangle glaucoma is not associated with photoreceptor loss. Invest. Ophthalmol. Vis. Sci. 1995; 36 (1): 200-205.
5. Akashi A., Kanamori A., Nakamura M., Fujihara M., Yamada Y., Negi A. Comparative assessment for the ability of Cirrus, RTVue, and 3 D-OCT to diagnose glaucoma. Invest. Ophthalmol. Vis. Sci. 2013; 54 (7): 4478-4484.
6. Garas A., Vargha P., Hollo G. Diagnostic accuracy of nerve fiber layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomography to detect glaucoma. Eye. 2011; 25: 57-65.
7. Kim N. R., Lee E. S., Seong G. J., Kim J. H., An H. G., Kim C. Y. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest. Ophthalmol. Vis. Sci. 2010; 51 (9): 4646-4651.
8. Leite M.T., Zangwill L.M., Weinreb R.N., Rao H.L., Alencar L.M., Sample P.A., Medeiros F.A. Effect of disease severity on the performance of Cirrus SpectralDomain OCT for glaucoma diagnosis. Invest. Ophthalmol. Vis. Sci. 2010; 51: 4104-4109.
9. Medeiros F. A., Zangwill L. M., Bowd C., Vessani R. M., Susanna R. Jr., Weinreb R.N. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol. 2005; 139 (1): 44-55.
10. Seong М., Sung К.R., Choi E.H., Kang S.Y., Cho J.W., Um T.W., Kim Y.J., Park S.B., Hong H. E,. Kook M.S. Macular and peripapillary retinal nerve fiber layer measurements by Spectral domain optical coherence tomography in normal-tension glaucoma. Invest. Ophthalmol. Vis. Sci. 2010; 51: 1446-1452.
11. Takagi S.T., Kita Y., Yagi F., Tomita G. Macular retinal ganglion cell complex damage in the apparently normal visual field of glaucomatous eyes with hemifield defects. J. Glaucoma. 2012; 21 (5): 318-325.
12. Tan O., Chopra V., Lu A.T., Schuman J.S., Ishikawa H., Wollstein G., Varma R., Huang D. Detection of macular ganglion cell loss in glaucoma by fourier-domain optical coherence tomography. Ophthalmology. 2009; 116 (12): 2305-2314.
13. Tan O., Li G., Lu A., Varma R., Huang D.; Advanced Imaging for Glaucoma Study Group. Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008; 115: 949-956.
14. Rao H. L., Babu J. G., Addepalli U. K., Senthil S., Garudadri C. S. Retinal nerve fiber layer measured by spectral domain optical coherence tomograph in Indian eyes with early glaucoma. Eye (Lond.). 2012; 26 (1): 133-139.
15. Bagga H., Greenfield D. S., Knighton R. W. Macular symmetry testing for glaucoma detection. J. Glaucoma. 2005; 14 (5): 358-363.
16. Lisboa R., Paranhos A. Jr., Weinreb R. N., Zangwill L. M., Leite M. T., Medeiros F.A. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest. Ophthalmol. Vis. Sci. 2013; 54: 3417-3425.
17. Wollstein G., Schuman J.S., Price L.L., Aydin A., Beaton S.A., Stark P.C., Fujimoto J.G., Ishikawa H. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am. J. Ophthalmol. 2004; 138 (2): 218-225.
18. Na J. H., Lee K., Lee J. R., Shon K., Lee K. S. Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fiber defects by spectral-domain optical coherence tomography. Clin.Exp. Ophthalmol. 3Dec; 41 (9): 870-880.
19. Medeiros F. A., Zangwill L. M., Bowd C., Sample P. A., Weinreb R. N. Influence of disease severity and optic disc size on the diagnostic performance of imaging instruments in glaucoma. Invest. Ophthalmol. Vis. Sci. 2006; 47: 1008-1015.
20. Park S. B., Sung K. R., Kang S. Y., Kim K. R., Kook M. S. Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch. Ophthalmol. 2009; 127 (12): 1603-1609.
21. Rolle T., Briamonte C., Curto D., Grignolo F.M. Ganglion cell complex and retinal nerve fiber layer measured by Fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma. Clin. Ophthalmol. 2011; 5: 961-969.
Review
For citations:
Angelov B., Petrova K. Optical coherence tomography and its role in the diagnosis of ocular hypertension, preperimetric and perimetric glaucoma. Ophthalmology in Russia. 2015;12(1):46-56. (In Russ.) https://doi.org/10.18008/1816-5095-2015-1-46-56